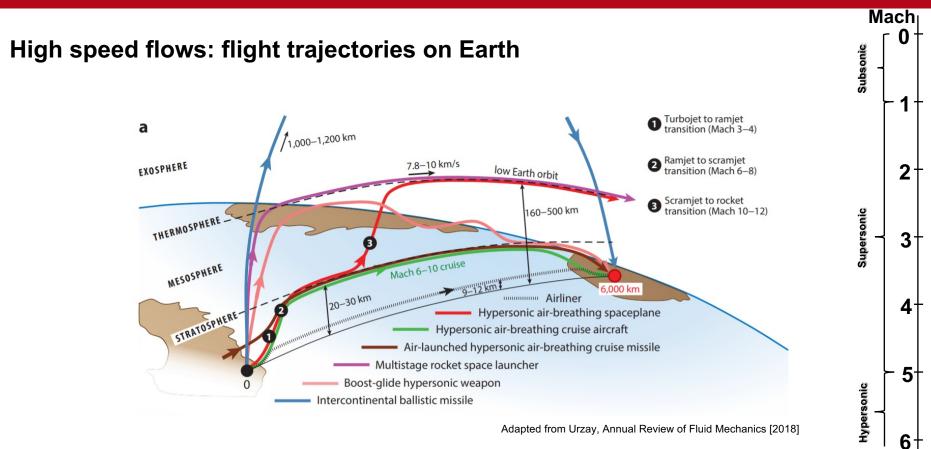


High fidelity simulations of high speed flows for aerospace problems

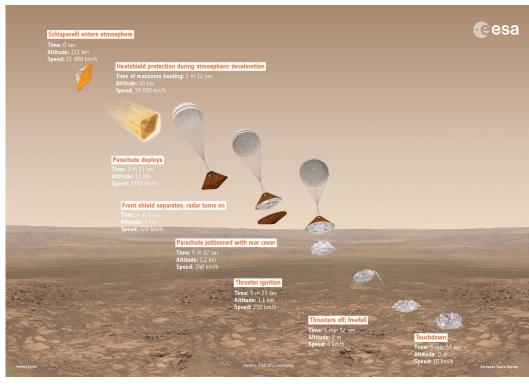
Michele Cogo - 37th Cycle


Supervisor: Prof. Francesco Picano

Admission to the first year - 27/10/2021

2

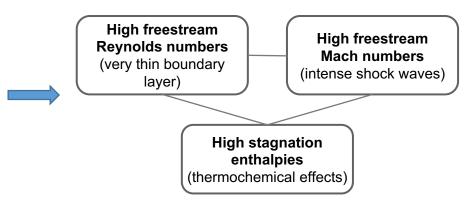
High fidelity simulations of high speed flows for aerospace problems

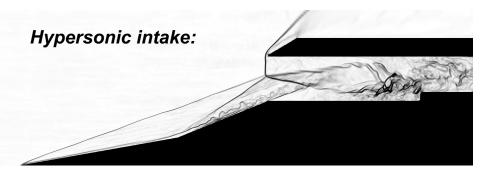


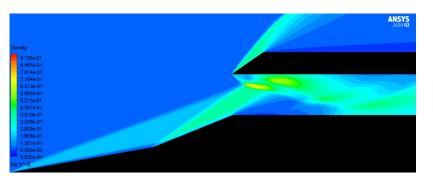
High speed flows: reentry trajectory on Mars

Entry phase: starts at the edge of the atmosphere where the capsule is slowe down with the heat shield (hypersonic range).

Descent phase: the parachute is deployed when the spacecraft reaches a velocity around 500 m/s (Mach 2).



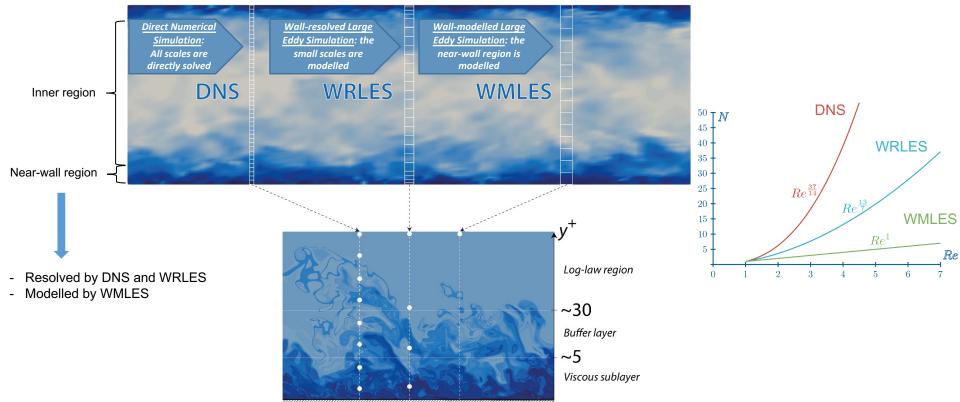



Common features of high speed flows:

- Different physics phenomena are present due to the high kinetic and thermal energy content of the inflow
- Particular instabilities of the flow arise that can vary significantly the mechanical and thermal loads on the system

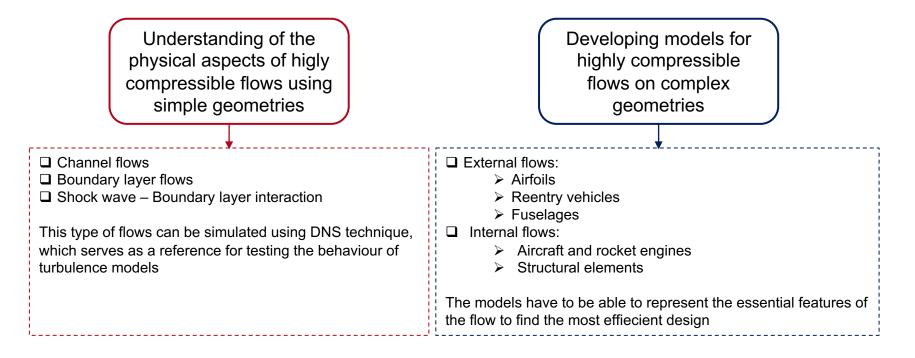
Large Eddy Simulation (unsteady dynamics is captured), De Vanna et al. [2021] AIAA

RANS simulation (averaged method)


Michele Cogo

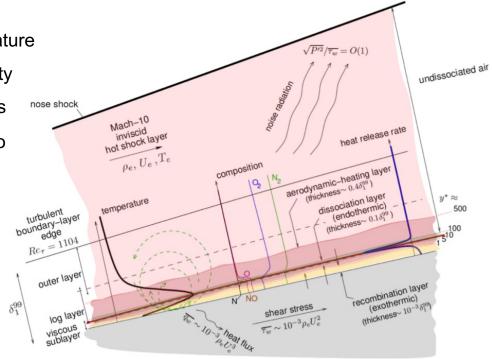
State of the art methodologies

What are the state of the art techniques for simulating unsteady flows?


Michele Cogo

High fidelity simulations of high speed flows for aerospace problems

Due to computational cost limitations, two main research branches exists:

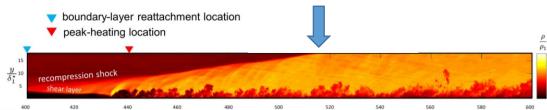


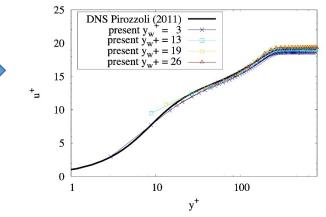
Study the flow statistics to understand the effects of compressibility:

- > Wall-normal profiles of velocity, pressure, temperature
- > Analysis of the fluctuation intensity of each quantity
- Analysis on the shape and size of turbulent eddies
- Investigation on the thermochemical effects due to aerodynamic heating
- Investigation on the validity of theoretical laws

<u>These configurations are essential also to</u> <u>calibrate the underlying models of LES</u> <u>and WMLES!</u>

Schematics of the structure of the hypersonic turbulent boundary layer. Adapted from Urzay et al., Annual Research Briefs, CTR [2020]



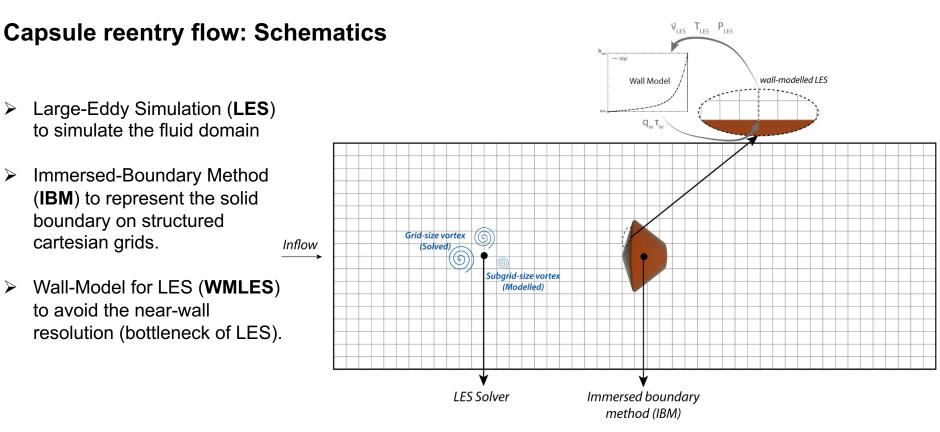


Validating LES and WMLES models using DNS data:

Several open questions:

- How do the models predict the wall-normal profiles of averaged and rms quantities?
- Can the models predict arodynamic heating and the related thermochemical effects that arise in hypersonic flows?
- Do the model work with strong pressure gradients? (e.g. Shock wave – boundary layer interaction)

Wall-normal velocity profiles computed with WMLES on progressively coarser grids $Ma_b = 2$ and $Re_\tau = 250$, De Vanna et al. [2021] PRF


Density contours of shock wave – boundary layer interaction at Mach 6. Fu et al. [2021] JFM

Michele Cogo

Task #3: Simulating complex flows

Summary of the proposed activity

- Investigation of the physics phenomena related to high-speed turbulent flows using high fidelity methodologies (DNS) on simple geometries.
- Validation of LES and WMLES methods on simple geometries to understand the point of strenght and shortcomings of different models.
- Application of WMLES methods combined with IBM to a capsule reentry flow at different flight conditions.

<u>Several other applications are</u> <u>directly related to the research</u> <u>activity!</u>

Activity plan

WBS NUMBER	TASK TITLE	FIRST YEAR										SECOND YEAR									THIRD YEAR										
			F1	1			Т3		T4			T1		T2			Т3		T4		T1		T2		2		Т3		T4		
		0	NC	J	F	М	A M	J	JA	A S	0	N	D.	JF	м	Α	м	JJ	A	S	0	N	D	JF	F P	A N	M	J	J	Α	S
1	DNS - Attached flows in simple configurations																														
1.1	Analysis of the state of the art																														
1.2	Hypersonic turbulent boundary layer over a flat plate with DNS																														
1.3	Hypersonic turbulent boundary layer over a rhough plate with DNS																														
1.4	Investigation of the thermochemical effects in a hyapersonic boundary layer																														
2	LES/WMLES - Simulations of attached flows in simple configurations																														
2.1	Analysis of the state of the art																														
2.2	Hypersonic turbulent boundary layer over a flat plate with LES/WMLES																														
2.3	Hypersonic turbulent boundary layer over a rough plate with LES/WMLES																														
2.4	Supersonic shock wave - boundary layer interaction (SBLI) with WMLES		1																												
3	LES/WMLES - Simulations of capsule reentry configurations																														
3.1	Analysis and implementation of wall-models for LES																														
3.2	Analysis on the effect of Mach number																														
3.3	Analysis on the effect of Angle of attack																														
3.4	Analysis on the wake region fluctuations in time and frequency domain																														
4	Writing thesis and reports																														
4.1	Reports for admission to the next year or conferences																														
4.2	Writing thesis																														

Thanks for the attention

Università degli Studi di Padova