

Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

E.Lama Moualla - 36th Cycle

06/11/2020

Table of Contents

I. Introduction

- II. State of The Art
- III. Research Problem
- **IV.** Research Incentives
- V. Research Objectives
- VI. Research Significance
- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

- The change in the equilibrium state of the earth's crust leads to its deformation • and the distortions caused by either natural phenomena or from the construction of huge engineering installations often cause heavy material losses

There are various equipment for measuring and monitoring distortions

How can we extract information from InSAR satellite images quickly, effectively and automatically, achieving the maximum benefit for end-users?

- I. Introduction
- II. State of The Art

- III. Research Problem
- IV. Research Incentives
- V. Research Objectives
- VI. Research Significance
- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

The first axis: Applications of InSar technology in monitoring infrastructure displacements

The second axis: Integration between artificial intelligence technologies and geographic information systems GIS

The third axis: Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images

Applications of InSar technology in monitoring infrastructure displacements

Sentinel-1

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

Applications of InSar technology in monitoring Ground Deformations

Measurement Methods Differential Synthetic Persistent Scatt					
Analysing Displecements	Differential Synthetic Aperture	Small BAseline Subsets	Persistent Scatterer	Study Main Goal	Date
Time Series for InSar	Radar Interferometry		Interferometry		
Images	DInSar	SBAS	PSI		
				Create a 3D map	2010
				of crustal deformations	2010
				Monitoring land subsidence	2017
				caused by mining operations	Date 2010 2017 2017 2018 2018
				Ground deformation monitoring	
				of a landslide sensitive area	2017
				surrounded by a stable area	
				Monitoring the deformation	
				of an area in which the water	2018
Analysing Displecements Time Series for InSar Images				extraction processes take place	
				Dynamic ground	2049
V				deformation monitoring	2018

Applications of InSar technology in monitoring infrastructure displacements

Methodology	The influencing factor	Number of Images ascending or descending	Date	Infrastructure Type	Case Study
MT-InSAR, SARProZ	Ground movements	28	Mar.2015 to Feb.2016	Arenoso dam	province of Cordoba, Spain
				Nanjing Dashengguan	
Simplified PSI	Temperature	29 Asc.	Apr.2015 to Aug.2016	Yangtze River High-speed Railway Bridge	Jiangsu, China
MT-InSAR, SARProZ	Aging	51Asc. & 47Des.	Dec.2014 to Apr.2017	Ajaure dam	Västerbotten, North Sweden
	Concorrel Coll	23 Asc.	Sep.2015 to Dec.2016		(Bristol, Bath, Bournemouth) Western UK
SARscape	Movement	23 Asc.	Jan.2016 to Mar.2017	Road and rail networks	(Grantham, Peterborough, Kings Lynn) Eastern UK
PSI	Active Movement	51	Nov.2014 to Sep.2016	Vulnerable Structures	(Gran Canaria, La Gomera, Tenerife)
			• • •	(buildings, roads, etc)	Spain Islands
Classical PSInSAR SARProZ	Siesmology	36 Asc. & 38 Des.	Oct.2014 to Apr.2016	Cunovo Dam	Bratislava, Slovakia

The first axis: Applications of InSar technology in monitoring infrastructure displacements

The second axis: The integration between artificial intelligence technologies and geographic information systems GIS

The third axis: Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images

The Integration between artificial intelligence technologies and geographic information systems GIS

Università

DEGLI STUDI

di Padova

1222+2022

GEOAI

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

Integration between artificial intelligence technologies and GIS

	Intellig	ent Method	s Integrate	with GIS			
Genetic	Neural	Fuzzy	Artificial	Artificial	Fuzzy		
	Networks	C-Means	Neural	Artificial	Inference	Study Main Goal	Date
Genetic N Algorithm		Clustering	Networks	Intelligence	System		
						Create a Landslide Sensitivity	
			$\mathbf{\sim}$		$\mathbf{\sim}$	Map LSM	2010
						Damaged Sewage Pipes	
\sim			\sim			0 0 1	2012
						Developing a Model for	
		\checkmark	\checkmark			Predicting Urban Growth	2012
						Interpretation of Spatial	
				\sim		Resource Information	201 2
						Monitoring Active Faults and	
						Creating Database for Crustal	2016
						Movements	

Integration between artificial intelligence technologies and GIS

Intelligen	t Methods I	ntegrate w	ith GIS		
Data	Artificial	l Support Adaptive			
Envelonment	Neural	vector	neuro-fuzzy	Study Main Goal	Date
Δnalysis	Networks	Machine	Inference		
Anarysis	INCLINUINS	Iviacinite	System		
				Create a map of potential groundwater	2017
				productivity	2011
				Calculate the level of road hazards	2017
				and identify high-risk portions	
				Determine the optimal areas	
			\checkmark	for planning road networks	2018
			>	Create sensitive maps for subsidence	2018
				Study the spatial distribution of deforestation	2018
				and modeling of vegetation change forms	

CISAS

The first axis: Applications of InSar technology in monitoring infrastructure displacements

The second axis: Integration between artificial intelligence technologies and geographic information systems GIS

The third axis: Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images

Developed artificial intelligence techniques in monitoring and extracting infrastructure displacements using satellite images

Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images

		Measurem	ent Methods	5			
Deep Convolutional Neural Network	Artificial Neural Networks	Genetic Algorithm	Fuzzy Inference System	Decision Support System	Adaptive Neuro-Fuzzy Inference system	Case Study	Date
						Building a daily prediction system for the horizontal displacements of a dam	2010
				$\mathbf{>}$		Evaluation and interpretation of 3D shifts of tunnel walls	2010
		Ø				Railroad subsidence monitoring and prediction	2015
						Application of data mining techniques in structural safety monitoring	2017
						Prediction of InSAR time-series deformation	2019

The first axis: Applications of InSar technology in monitoring infrastructure displacements and the nature of the data it provides

The second axis: Integration between artificial intelligence technologies and geographic information systems GIS

The third axis: Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images

State of The Art Summary

Infrastructure displacements will be detected by using intelligent technologies

NEW Algorithm

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

State of The Art Summary

Infrastructure displacements will be detected by using intelligent technologies

We will develop an intelligent tool that goes beyond talking about what's going on? Where is it happening? And when does it happen?

To show how it happens? And why does it matter? And what will happen?

- I. Introduction
- II. State of The Art
- III. Research Problem

- IV. Research Incentives
- V. Research Objectives
- VI. Research Significance
- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

What is the best intelligent algorithm that can be used to develop a methodology for detecting infrastructural displacements?

The main problem of the research centers on developing an accurate and intelligent algorithm to create a predictive model in a GIS environment that can be directly applied:

✓ To detect displacements

NIVERSITÀ

degli Stud di Padova

- ✓ To expand the functionality of geographic information systems to include modeling and simulation capabilities
- ✓ To reduce the effort made by experienced interpreters and analysts

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

SANNI UNIVERSITÀ DECLI STUDI DI PADOVA

How can we use the methodology that we will try to develop in constructing a predictive model of the studied infrastructure displacements?

The main problem of the research centers on developing an accurate and intelligent algorithm to create a predictive model in a GIS environment that can be directly applied:

- ✓ To detect displacements
- ✓ To expand the functionality of geographic information systems to include modeling and simulation capabilities
- ✓ To reduce the effort made by experienced interpreters and analysts

How to invest in the predictive model that we will try to develop within a GIS environment so that ordinary GIS users can benefit from it?

The main problem of the research centers on developing an accurate and intelligent algorithm to create a predictive model in a GIS environment that can be directly applied:

- ✓ To detect displacements
- To expand the functionality of geographic information systems to include modeling and simulation capabilities
- ✓ To reduce the effort made by experienced interpreters and analysts

- I. Introduction
- II. State of The Art
- III. Research Problem
- IV. Research Incentives

- V. Research Objectives
- VI. Research Significance
- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

Until today, GIS doesn't include tools that can detect infrastructural displacements and construct a predictive models for them

The data of GIS is constantly growing

Sensitive areas to landslides in Italy represent the study case of the research

- I. Introduction
- II. State of The Art
- III. Research Problem
- IV. Research Incentives
- V. Research Objectives

- VI. Research Significance
- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

First: Using Intelligent algorithms in developing a methodology that can automatically analyze large InSar data packets and identify areas where infrastructures are at risk of displacement due to ground movement

Second: Establishing a predictive model for the displacements of the infrastructure studied in the research, based on the methodology that we will try to develop

Third: Determine the functions of the GIS tool that will be developed to integrate the final work results within a GIS environment

- I. Introduction
- II. State of The Art
- III. Research Problem
- IV. Research Incentives
- V. Research Objectives
- VI. Research Significance

- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

The using of radar interference technology and intelligent technologies makes research extremely important in obtaining very important data that will reduce catastrophic risks which will return to the national economy at a high value

Research Significance

	Determine the level of catastrophic risk in potentially unstable locations by following a new standardized method of systematic planning
Axis	Reference Studies
Applications of InSar technology in monitoring infrastru displacements	ructure 1 - 13
Integration between artificial intelligence technologies geographic information systems GIS	es and 14 - 24
Artificial intelligence techniques developed in monito infrastructure displacements using satellite image	oring 25 - 34

Research Significance

Analyzi of image	ng huge amounts Jes received
Axis	Reference Studies
Applications of InSar technology in monitoring infrastructure displacements	1 - 13
Integration between artificial intelligence technologies and geographic information systems GIS	14 - 24
Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images	25 - 34

	measurements of displacements over large areas with an accuracy of more than one centimeter per
Axis	Reference Studies
Applications of InSar technology in monitoring in displacements	nfrastructure 1 - 13
Integration between artificial intelligence techno geographic information systems GIS	ologies and 14 - 24
Artificial intelligence techniques developed in r infrastructure displacements using satellite	monitoring 25 - 34 images

Research Significance

Provie Received the second se	ding local, regional and nal authorities with the esults
Axis	Reference Studies
Applications of InSar technology in monitoring infrastructure displacements	1 - 13
Integration between artificial intelligence technologies and geographic information systems GIS	14 - 24
Artificial intelligence techniques developed in monitoring infrastructure displacements using satellite images	25 - 34

- I. Introduction
- II. State of The Art
- III. Research Problem
- IV. Research Incentives
- V. Research Objectives
- VI. Research Significance
- VII. Research Methodology

VIII. GANNT-bar Chart of the research

Research Methodology

- I. Introduction
- II. State of The Art
- III. Research Problem
- **IV.** Research Incentives
- V. Research Objectives
- VI. Research Significance
- VII. Research Methodology
- VIII. GANNT-bar Chart of the research

Activity	20	20						20	21											20	22										2	023				
	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
Writing a Mini Review																																				
Interdisciplinary Modules																																				
Exams																																				
Collecting Data																																				
Developing The Methodology																																				
of Research																																				
Writing a Paper																																				
Establishing The Predictive																																				
Model																																				
Writing a Paper																																				
Programming a GIS Tool																																				
Writing a Paper																																				
Writing The Thesis																																				

Thanks for the attention

Università degli Studi di Padova