

Università degli Studi di Padova

Development of a Fine Steering Tip/Tilt Mechanism for Space Applications

Armando Grossi - 36th Cycle

Supervisor: Prof. Ugo Galvanetto

Industrial Supervisor: Eng. Emanuele Piersanti

PhD Course in Science, Technologies and Measurements for Space Admission to second year - 08/09/2021

- Industrial Doctorate
- Introduction
- Research Project Objectives
- An Overview of the Mechanism
- First Year Completed Activities
 - Requirements Definition
 - Bibliographic Review
 - System Configuration Trade-off
 - Preliminary System Design
 - Amplification Mechanism
- Next Steps in the Second Year
- Work Activity

INDUSTRIAL DOCTORATE

OFFICINA STELLARE

an innovative SME active in the design and production of telescopes, optomechanical and aerospace instrumentation for Ground and Space based applications

SPACE TELESCOPES

- Earth observation
- Outer space observation

PROBLEM

Line-of-sight and image performances affected by:

- Thermal gradients;
- Misalignment due to launch vibrations;
- Platform jitter (due to reaction wheels);
- Fuel slosh;
- Ground errors (manufacturing, integration, ...)

A SOLUTION active mechanism to adjust the position/orientation of optical elements

NECESSITY TO CORRECT OPTICAL COMPONENTS POSITION

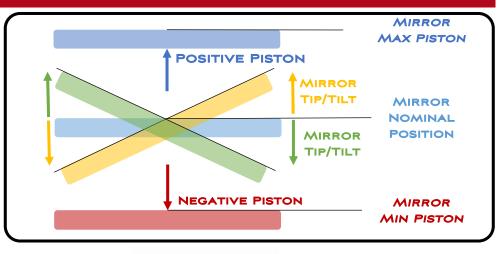
Design and Realization of a fine steering mechanism equipped with piezoelectric actuators

Space qualification of the fine steering mechanism

Acquisition of know-how in the **piezoelectric actuators** field

Acquisition of experience in the **active optics** field

An Overview of the Mechanism



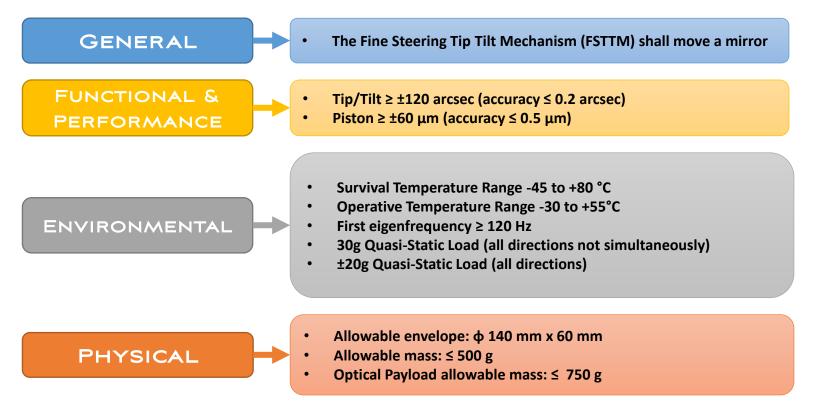
 Movement generated by piezoelectric actuators:

o PROs

- High resolutions
- No stick-slip
- No lubrifications
- High vacuum operations
- Low power consumption
- Low heat dissipation
- CONs
 - Limited stroke
 - High Voltage

[from Physik Instrumente]

- First year activities completed:
 - ✓ Requirement definition
 - ✓ Bibliographic review
 - ✓ System configuration trade-off
 - ✓ Design and analysis of the amplification mechanism
 - Preliminary design and analysis of the system (amplified piezo actuators + optical payload + IF platform)



Requirements Definition

• A definition of the Fine Steering Tip/Tilt Mechanism requirements has been performed

Armando Grossi

Bibliographic Review

- A bibliographic review have been conducted on:
 - Piezoelectric actuators
 - 3 DoF mechanisms with piezoelectric actuators

Particular attention on:

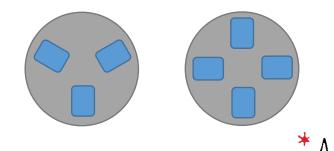
- those mechanisms performing one translation, and two rotations
- those mechanisms used (or that will be used) in space missions

[SODISM Pointing Mechanism, from Meftah, et. Al., 2011]

[**ATLID BSA**, from Claeyssen, et. Al., 2018]

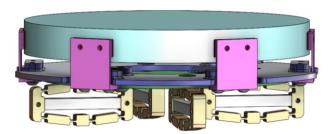
[**Point Ahead Mechanism** (PAM), from Guignabert, et. Al., 2020]

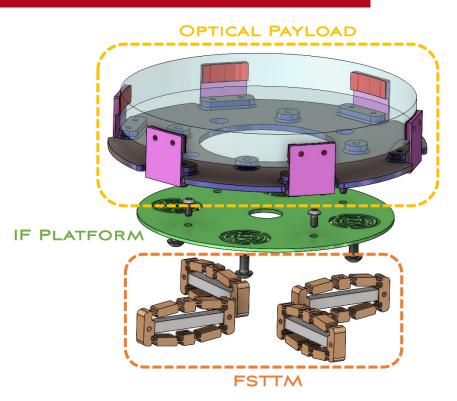
System configuration trade-off



- A system configuration trade-off, to define **type** and **number** of piezo actuators has been done.
- TYPE:
 - Multi-layer piezo (or piezo stack) actuators selected → if equipped with an amplification mechanism, they guarantee both high free displacements and reasonable free force values.

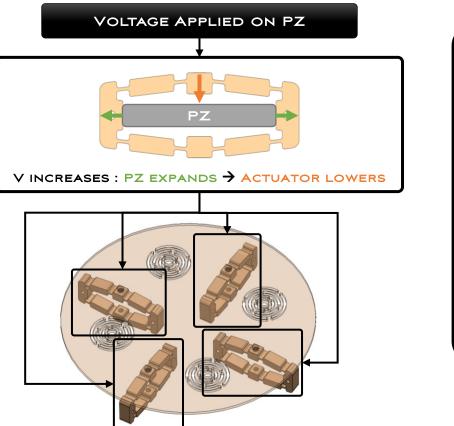
• NUMBER:

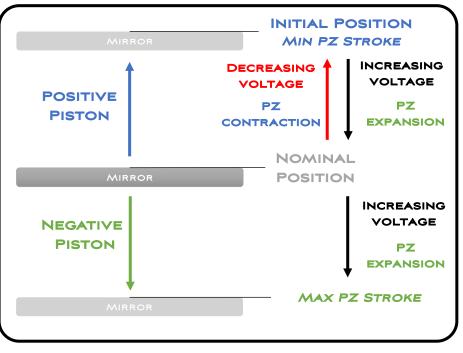

- From literature review, 3-DoF mechanisms, able to perform 2 rotations and 1 translations, can be equipped with 3 or 4 piezo actuators
- 4 actuator configuration selected
 - o Stiffer system
 - o Control system easier
 - Lower required stroke for tip/tilt



Preliminary System Design – an overview

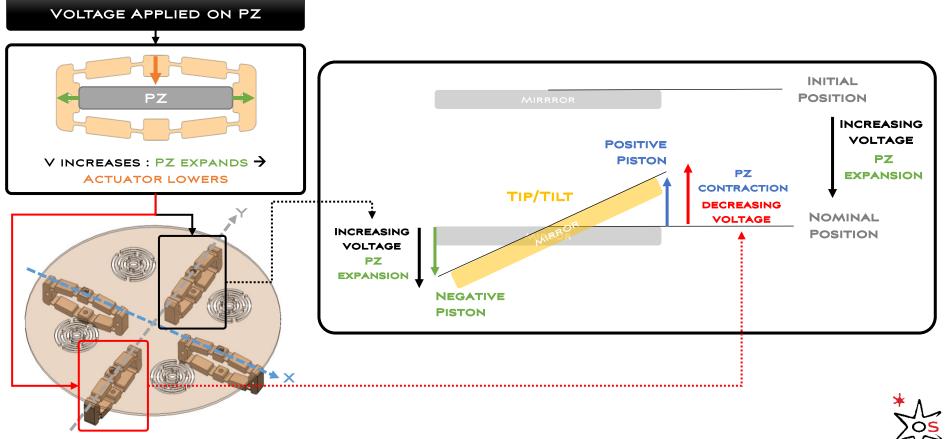
- Three sub-systems can be identified:
 - Fine Steering Tip/Tilt Mechanism (FSTTM), consisting of 4 amplified piezo stack actuators
 - Optical Payload, consisting of a mirror, and its supporting cell
 - IF platform, connecting the FSTTM to the optical payload





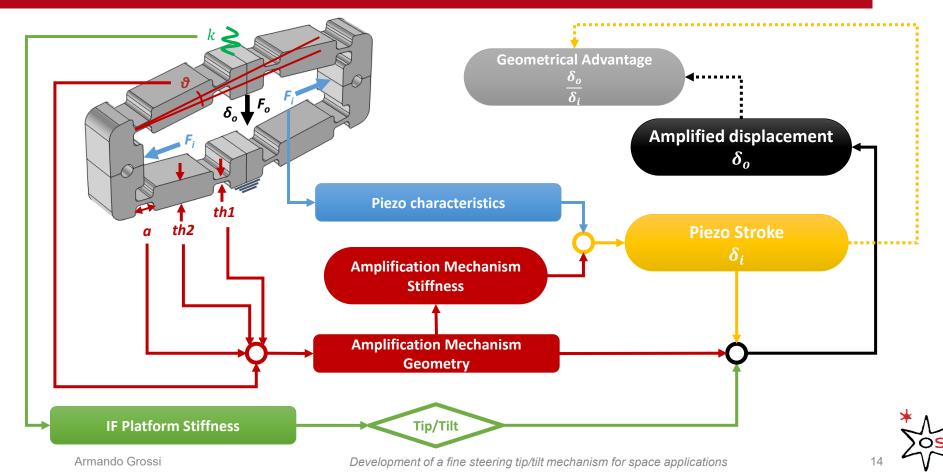
Armando Grossi

Preliminary System Design – Piston Principle



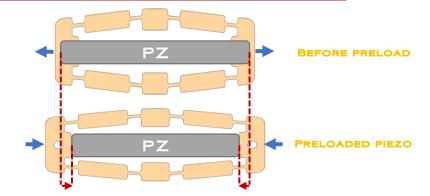
Preliminary System Design – Tip/Tilt Principle

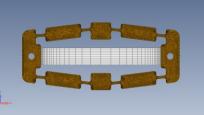
13



Armando Grossi

Amplification Mechanism – Parametric Design





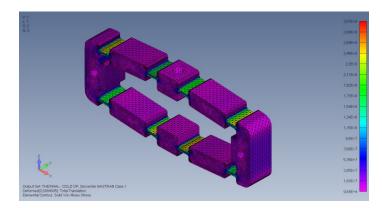
- Pizoelectric actuator has to be preloaded.
- A preload ≤ 15 MPa is recommended by piezo manufacturer.
- Preload realized through the Amplification
 Mechanism → AM axial length < Piezo length

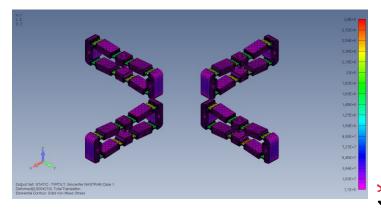
LOAD CONDITION	Average pressure [MPA]	PRESSURE VARIATION [MPA]
20°C (no gravity)	9.12	/
-45°C (no gravity)	14.4	+5.31
-30°C (no gravity)	13.3	+4.16
+ 55°C (no gravity)	6.04	-3.07
+ 85°C (no gravity)	4	-5.12
gravity	8.65	-0.47

/:1		1,67E+7
2		1,6E+7
ā ī		1,53E+7
		1,47E+7
		1,4E+7
		1,33E+7
		1,26E+7
		1,19E+7
		1,12E+7
		1,05E+7
		9,85E+6
		9,16E+6
		8,48E+6
4		7,79E+6
X Y		7,1E+6
Dutput Set: STATIC - 1G, Simcenter NASTRAN Case 1		6,42E+6
Idal Contour: Contact Pressure		5,73E+6

- A preload compression of about 9 MPa has been selected.
- FE analyses performed to analyze the preload variation due to gravity and thermal loads.

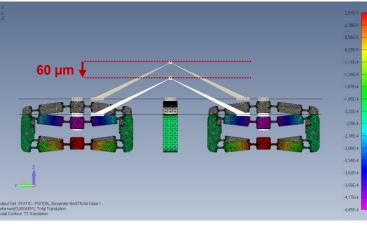
Armando Grossi

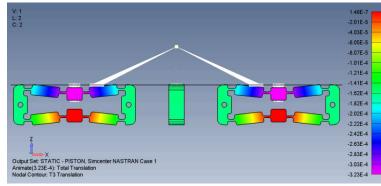



Amplification Mechanism – Fatigue Analysis

- A fatigue analysis on the amplification mechanism has been performed.
- Its endurance (or fatigue) limit has been estimated, considering degradation due to surface condition, reliability and other miscellaneuos effects.
- Assuming a worst case scenario, the amplification mechanism can survive to an infinite number of cycles.
- Stress values from system FEA have been used.

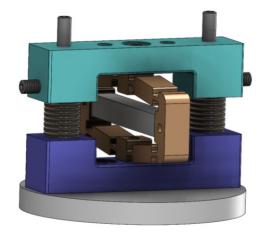
LOAD CONDITION	MAX TENSILE STRESS ON AMPLIFICATION MECHANISM [MPA]
Only Preload (0 V), @ T _{amb}	219
Min Piston (-60 μm), @T _{amb} – preload included	318
Max Piston (+60 μm), @T _{amb} – preload included	231
May Tin (130 areas) @ T neological included	290 (max value)
Max Tip (120 arcsec), @ T _{amb} – preload included	259 (min value)
Hot Survival Temperature (0 V) – included preload	104
Cold Survival Temperature (0 V) – included preload	334




Preliminary System Design - FEA

- The preliminary system designed, has been analysed with several FE analyses.
- FE model consisting in:
 - Amplification mechanisms without piezo, but replaced by their forces;
 - IF platform, connected to the AMs through rigid elements;
 - Optical payload modelled as a point mass, and connected to the IF platform through a rigid element.
- Performed analyses:
 - A maximum tip/tilt case (simulating a rotation of 120 arcsec)
 - Maximum and minimum piston case (simulating a translation of ±60 μm)
 - Modal analysis
 - Stress analysis

Piston Case: ±60 µm

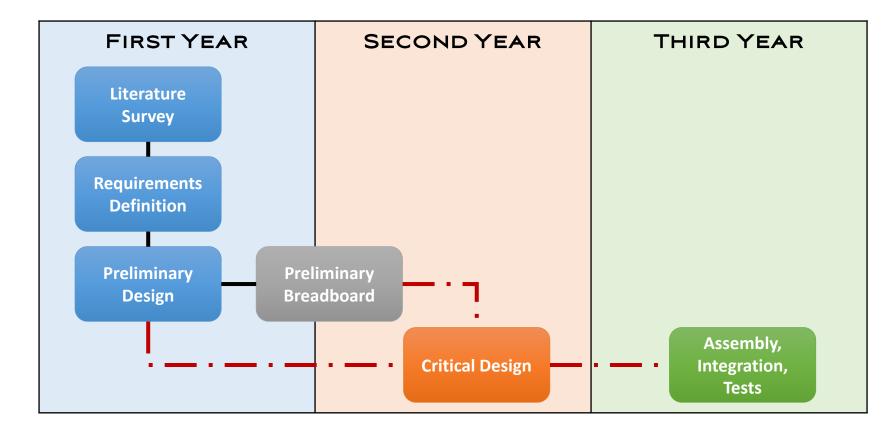


Next Steps in 2nd Year

□ Realizazion of a **breadboard**

- consisting in:
 - Amplification Mechanism
 - Piezoelectric Actuator
 - Voltage amplifier and controller
 - GSE to simulate payload stiffness
- to verify results obtained by FEA

□ From test results, a **critical design** of the system will be performed.



Work Activity – Main Steps

19

Thanks for the attention

Università degli Studi di Padova