

FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT Shengyu Zou - 35th Cycle

Supervisor: Prof. Alessandro Francesconi

Presentation for admission to 3nd PhD year – Jan. 11, 2022

- ◆ SPH numerical simulation methodology
- Characterizing projectile shape effect on debris cloud
- Characterizing and modeling on fragmentation properties
- Experimental study on inclined impact effect of cylindrical projectile

Research background

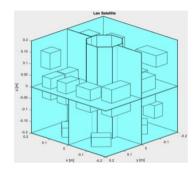
SPH numerical simulation methodology

Characterizing projectile shape effect on debris cloud

- Characterizing and modeling on fragmentation properties
- Experimental study on inclined impact effect of cylindrical projectile
 Summery

Research background

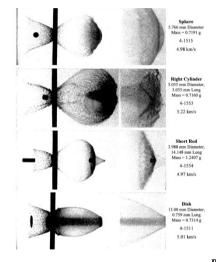
D Space debris condition

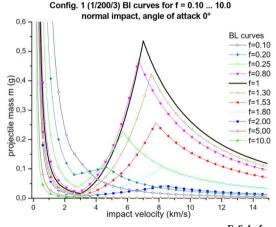

Orbital space debris

Fragmentation incidents on orbit

Simulating experiment

S. Lan, et al. 2014


- One of the main causes of orbiting debris: hypervelocity impact fragmentation incident on orbit.
 - From laboratory simulating test: a large fraction of fragmentation debris tend to be flake-like and long needle-like structures.


Research background

Projectile shape effect

Projectile shape effect on Debris cloud

Projectile shape effect on ballistic limit curves for Whipple Shield

Piekutowski A.J. 1996

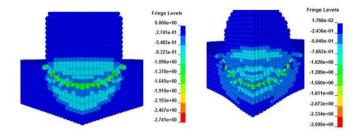
F. Schafer, et al. 2003

- Non-spherical projectiles have different characteristics in fragmentation of projectiles and shielding plates from which are generated by spherical projectiles, and consequently have different damage potential.
- This research aims to investigate the fragmentation models for hypervelocity impact with consideration of projectile shape effect.

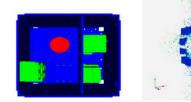
◆ SPH numerical simulation methodology

Characterizing projectile shape effect on debris cloud

- Characterizing and modeling on fragmentation properties
- Experimental study on inclined impact effect of cylindrical projectile
 Summery

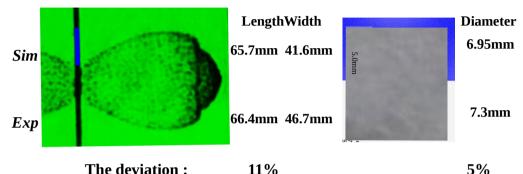

UNIVERSITÀ DECLI STUDI DI PADOVA SPH simulation methodology

Smooth Particles Hydrodynamics - SPH


- Gridless method: filling up with particles.
- Extreme deformation and high pressure condition.

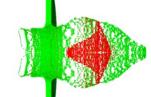
□ Parallel SPH simulation platform — PTS code

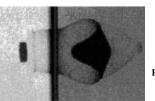
- PTS (Parallel Tool kit of SPH) : a parallel SPH simulation software from HIRC of CARDC.
- It can be more efficient, and of lower occupation of computational resources.
- Applications: 3D simulations of hypervelocity impact issues, and large-scale complex problems like fragmentation of orbiting satellite, simulation of asteroid impact, etc.



Simulation validation

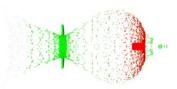
Reference data of spherical projectile :

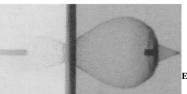

- **Φ3.175mm sphere to 1mm sheet at 5.89km/s**
- Projectile material: Al-2017, sheet material: Al-6061



□ Simulation validation for shaped projectiles

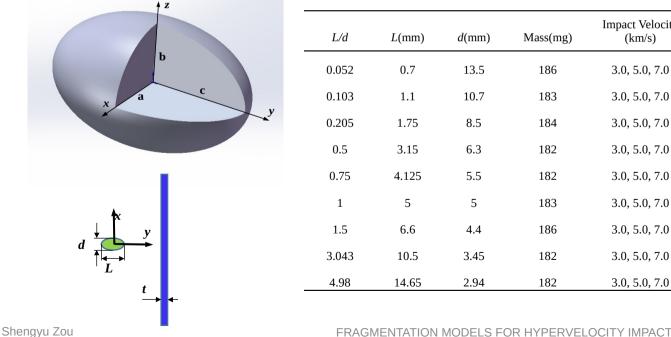
Case 1:


- Cu projectile to Al sheet, at 5.55km/s
- Projectile diameter Xthickness: 11.18mm3.45mm
- Sheet thickness:2.87mm



Case 2:

- Zn projectile to Zn sheet, at 4.97km/s
- Projectile : 3.98mm14.15mm,
 - sheet thickness: 1mm.



Experiment of Literature Mullin S.A., et al. 1995

Simulation setups & cases

- Ellipsoidal projectile: with L/d ranging 0.05~5, where *L*=2c, d=2a=2b, as shown below. ٠
- Projectile material: Al-2024, sheet material: Al-6061. ٠
- Collision attitude: both the ellipsoidal rotation axis and the flight direction being normal to the surface. ٠

L/d	L(mm)	<i>d</i> (mm)	Mass(mg)	Impact Velocity (km/s)	Sheet thickness (mm)
0.052	0.7	13.5	186	3.0, 5.0, 7.0	1.0, 2.0
0.103	1.1	10.7	183	3.0, 5.0, 7.0	1.0, 2.0
0.205	1.75	8.5	184	3.0, 5.0, 7.0	1.0, 2.0
0.5	3.15	6.3	182	3.0, 5.0, 7.0	1.0, 2.0
0.75	4.125	5.5	182	3.0, 5.0, 7.0	1.0, 2.0
1	5	5	183	3.0, 5.0, 7.0	1.0, 2.0
1.5	6.6	4.4	186	3.0, 5.0, 7.0	1.0, 2.0
3.043	10.5	3.45	182	3.0, 5.0, 7.0	1.0, 2.0
4.98	14.65	2.94	182	3.0, 5.0, 7.0	1.0, 2.0

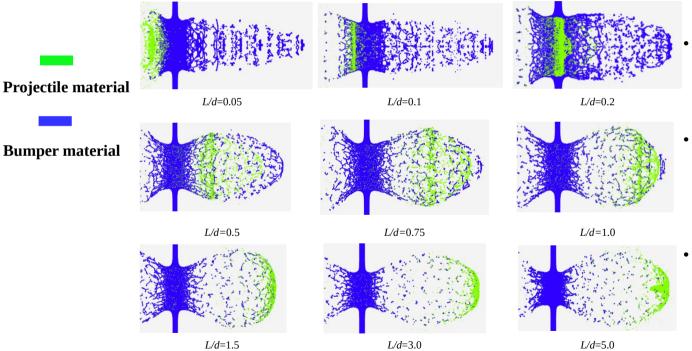
Research background

SPH numerical simulation methodology

• Characterizing projectile shape effect on debris cloud

Characterizing and modeling on fragmentation properties

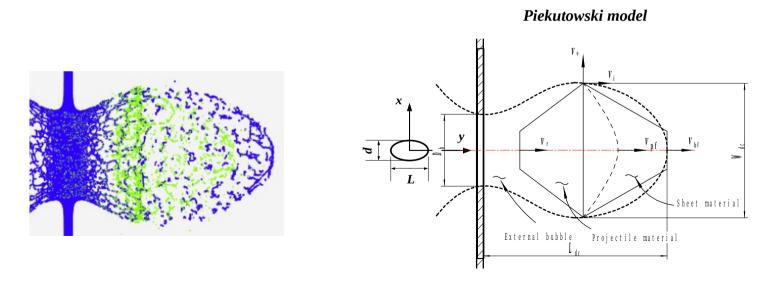
Experimental study on inclined impact effect of cylindrical projectile


Summery

10-27

Characterization of debris cloud geometry

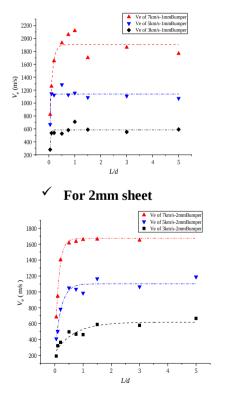
➢ For the case of 7km/s to 2mm bumper



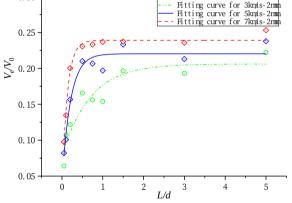
- Flat disk-like projectile produces a columnar debris cloud, in which the projectile material falls far behind the bumper material.
- Spherical projectile produces a more expanding debris cloud similar to spherical shell, in which the projectile material is located at the front part.
- Rod-like projectile produces a elliptical debris cloud, in which large remain of projectile is located at the leading part.

Debris clouds motions description

- Axial velocities: the leading edge velocity of projectile fragment V_{pf} , the leading edge velocity of target fragment V_{bf} ,
- Radial velocity: the expanding velocity of debris cloud V_e.


Università **DEGLI STUDI Characterization of debris cloud velocities**

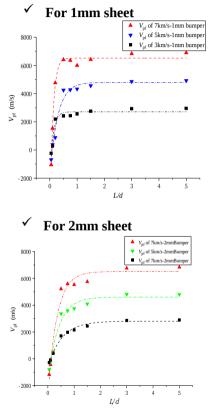
 \checkmark


\Box Fragments expanding velocity — V_{e}

\checkmark For 1mm sheet

DI PADOVA

Normalized expanding velocity — V_{o} / V_{o} V/V-3km/s-2mm V/ V-5km/s-2mm 0.30 Fitting curve for 3km/s-2m Fitting curve for 5km/s-2mm Fitting curve for 7km/s

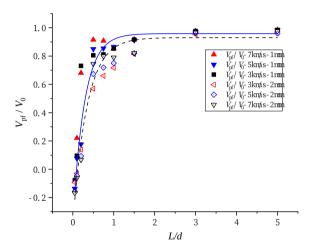


- Disk-like projectile : lower expanding velocity.
- Sphere and rod-like projectile: higher expanding velocity.
- Thicker sheet : lower expanding velocity.
- Nonlinear relationship between V_e and V_0 .

1222+2022

Characterization of debris cloud velocities

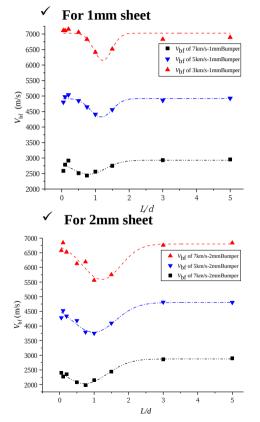
\Box The leading-edge velocity of projectile fragments — V_{pf}


Università

DEGLI STUDI

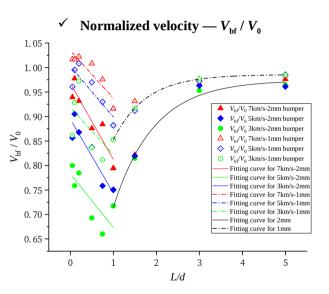
DI PADOVA

1222+2022


✓ Normalized velocity — V_{pf} / V_0

- Disk-like projectile : lower or backward axial moving velocity.
- Sphere and rod-like projectile: higher projectile fragments velocity.
- Thicker sheet : little effect on the projectile leading-edge velocity.
- Nearly linear relationship between V_{pf} and V_{0} .

Characterization of debris cloud velocities


\Box The leading-edge velocity of target fragments — $V_{\rm bf}$

Università

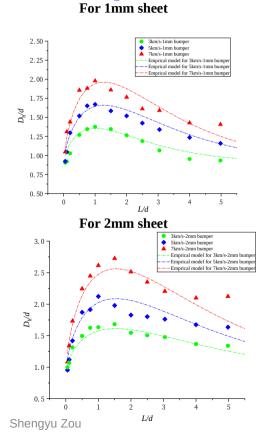
degli Studi di Padova

1222+2022

- Sphere-like projectile: lower velocity of $V_{\rm bf}$.
- Disk-like and rod-like projectile : higher velocity of $V_{\rm bf}$.
- Linear relationship between $V_{\rm bf}/V_0$ and L/d where L/d.
- Exponential relationship between $V_{\rm bf}/V_0$ and L/d where L/d.

FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

Shengyu Zou



- SPH numerical simulation methodology
- Characterizing projectile shape effect on debris cloud
- Characterizing and modeling on fragmentation properties
- Experimental study on inclined impact effect of cylindrical projectile
 Summery

Diameter of perforated hole

DI PADOVA

1222.2022

Empirical models

• For spherical projectile:

Maiden CJ, McMillan AR. AIAA/ 1964;2(11).

> $f \mathfrak{m}_{\overline{J}}^{L} \mathfrak{w} = k$ Shape effect consideration

• For shaped projectile:

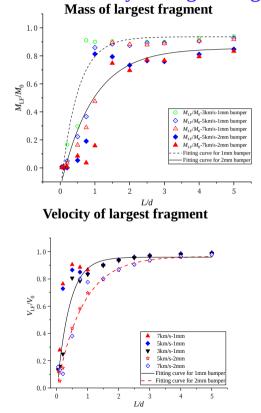
$$_{1} \mathfrak{m}_{\overline{d}}^{L} \mathfrak{m} \bullet e^{k_{2} \frac{L}{d}}$$

 $\frac{D_{\rm h}}{d} = 2.4 \bullet \frac{V_0}{c} \bullet \frac{t_{\rm b}}{d} \omega^{2\text{T3}} + 0.9$

 $\frac{D_{\rm h}}{d} = 2.4 \bullet \frac{V_0}{c} \bullet \mathfrak{m}_d^{t_{\rm b}} \mathfrak{u}^{2\text{T3}} \bullet k_1 \mathfrak{m}_d^{L} \mathfrak{u}^{a} \bullet e^{k_1(L/d)} + 0.9$

$$f\left(\frac{L}{d}\right) = 1.6933 \left(\frac{L}{d}\right)^{0.7173} \cdot e^{-0.5620(L/d)}$$

$$\checkmark \text{ For 2mm sheet}$$


$$f\left(\frac{L}{d}\right) = 1.4069 \left(\frac{L}{d}\right)^{0.6552} \cdot e^{-0.4247(L/d)}$$

Ref: S. Zou, L. Olivieri a, Z. Ma c, C. Giacomuzzo a,b, A. Francesconi. 72nd IAC, Oct. 2021.

FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

□ Mass and velocity of largest fragment

DI PADOVA

 \succ Empirical models

A pattern of exponential decay function was proposed.

$$\underbrace{\overset{\circ}{-}}_{\bullet} \frac{M_{\rm LF}}{M_0} = a_1 \bullet e^{-\frac{L/d}{a_2} \bullet} + C_1$$

$$\underbrace{\overset{\circ}{-}}_{\bullet} \frac{V_{\rm LF}}{V_0} = b_1 \bullet e^{-\frac{L/d}{b_2} \bullet} + C_2$$

✓ For 1mm sheet
$$\stackrel{\iota}{-2} \frac{M_{\rm LF}}{M_0} = -1.2998 \bullet e^{-\frac{LTd}{0.6495}} + 0.9355$$

 $\stackrel{-}{-2} \frac{V_{\rm LF}}{V_0} = -0.9735 \bullet e^{-\frac{LTd}{0.8402}} + 0.9660$
 $\stackrel{\prime}{-2} \frac{M_{\rm LF}}{M_0} = -0.9980 \bullet e^{-\frac{LTd}{0.9387}} + 0.8547$
 $\stackrel{-2}{-2} \frac{V_{\rm LF}}{M_0} = -0.9986 \bullet e^{-\frac{LTd}{0.4016}} + 0.9593$

ە__

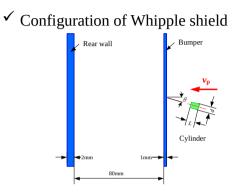
Ref: S. Zou, L. Olivieri a, Z. Ma c, C. Giacomuzzo a,b, A. Francesconi. 72nd IAC, Oct. 2021.

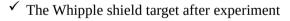
 $= -0.9986 \bullet e^{-0.4016} \bullet + 0.9593$

1222-2022

FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

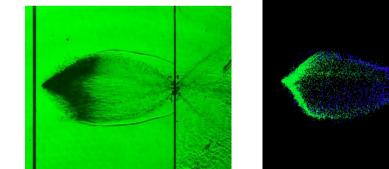
- SPH numerical simulation methodology
- Characterizing projectile shape effect on debris cloud
- Characterizing and modeling on fragmentation properties

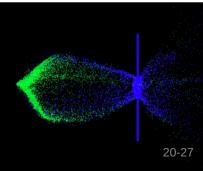

Experimental study on inclined impact effect of cylindrical projectile Summery


Università DECLI STUE Experimental study on inclined impact effect of cylindrical projectile

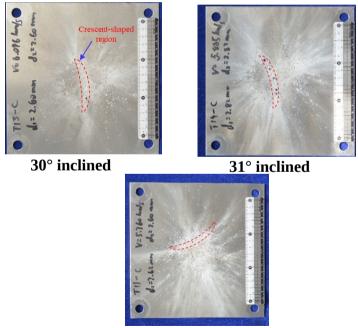
Experimental work

✓ Test setup

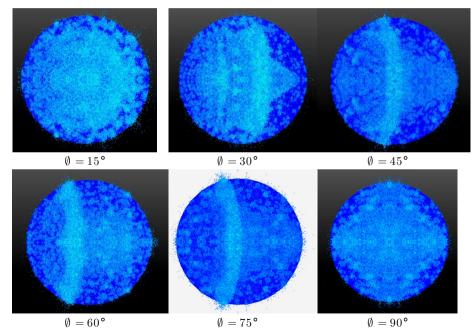

- Test facility: Two-stage-light-gas-gun. ٠
- **Projectile:** Cylinders of aluminum. ٠
- Target: Whipple shields of aluminum. ٠



Debris cloud images from experiment and numerical simulation √



UNIVERSITA DEGLI STUE DI PADOVA EXperimental study on inclined impact effect of cylindrical projectile


Damage pattern of the rear wall

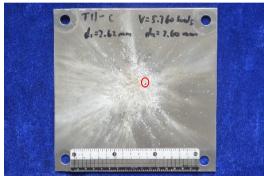
✓ Rear wall images from experiments around 6km/s

45° inclined

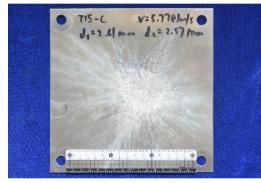
✓ Rear wall images from simulation at 6km/s

Shengyu Zou

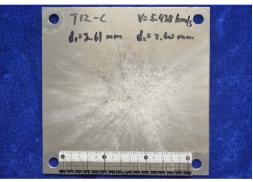
1222 • 2022


UNIVERSITÀ DECLI STUE DI PADOVA Experimental study on inclined impact effect of cylindrical projectile

√


Critical inclined angle analysis

45° inclined cylinder of Φ2.62mm x 2.6mm \checkmark at 5.760km/s


1222 • 2022

75° inclined cylinder of Φ2.61mm X 2.57mm at 5.778km/s

80° inclined cylinder of Φ2.61mm X 2.60mm at 5.938km/s

$$\frac{BC}{v_p} = \frac{AB}{U_s}$$

$$\int If \text{ impact velocity is 6km/s, then the critical inclined angle is 40°.}$$

$$\sin \varnothing_{cr} = \frac{BC}{AB} = \frac{v_p}{U_s}$$

critical inclined angle is 40 °.

Schonberg W. etc, 1993

Shengyu Zou

FRAGMENTATION MODELS FOR HYPERVELOCITY IMPACT

22-27

Summery of works done

• Characterizing projectile shape effect on debris cloud geometry and debris cloud motions:

- Flat disk-like projectile produces debris cloud with columnar geometry, in which the expansion velocity of debris cloud is lower, while the leading-edge velocity is relatively higher; the debris cloud produced by a sphere-like projectile has a higher expansion velocity but a lower leading-edge velocity, that means the debris cloud has a higher level of fragments diffusion; the fragmentation rate caused by impacting with a rod-like projectile is significantly insufficient, thus the total fragments population is significantly small, and the debris cloud includes a primary fragment with both mass and velocity close to those of projectile before collision.

• Characterizing and modeling projectile shape effect on perforation hole size:

- The sheet perforation capability of sphere-like projectile is strongest, after that, the rod-like projectile takes lower capability in sheet perforation, and the flat disk-like projectile takes the lowest capability in sheet perforation.

• Characterizing and modeling projectile shape effect on largest fragment:

- Flat disk-like projectile undergoes the most complete fragmentation because of hypervelocity impact, consequently it results in finest fragments with tiny mass and a smaller largest fragment with lower velocity. Projectiles with bigger shape factor(L/d) undergo lower level of hypervelocity impact fragmentation, thus the mass and velocity of primary fragment increase as the projectile shape transforms from disk-like one to rod-like one.

• Investigating the inclined impact of cylindrical projectile :

- For inclined impact, the most damaged area on rear wall was commonly crescent-shaped, and biased away the central craters. There is a critical inclined angle for cylindrical projectile according to shockwave propagation.

Shengyu Zou

Thanks for your attention

a RS

Università degli Studi di Padova

