

Simulation And Modeling Turbulent Spray Dynamics

Jietuo Wang - 34th Cycle

Supervisor: Prof./Dr. Francesco Picano

Admission to thesis evaluation - 15/12/2021

Motivation

Turbulent sprays: Complex multiphase flows where two distinguished phases mutually interact exchanging mass, momentum and energy in a turbulent environment.

Our goal

Jietuo WANG

- Improve the current understanding of turbulent spray
- Apply our knowledge to solve practical issues

dense regime atomizatio lute regime very dilute regime

Sketch of various regimes in turbulent sprays [Jenny.2012]

Diluted regime

- Dispersed droplets: **Point-droplet** approximation
- No break-up : surface tension >> aerodynamic forces
- low volume fraction (Φ $< 10^{-3}$) : No collision / coalescence; 2-way coupling method
- Main region occurring evaporation
- Advance modeling capabilities related to turbulent spray

Simulation And Modeling Turbulent Spray Dynamics

Research program

1 2 3 4

DNS of an evaporating turbulent diluted jet-spray at moderate Re Modeling Lagrangian droplets within a turbulent spray with the LES method

Short-range exposure to airborne virus transmission and current guidelines

Revisiting D^2 law for the evaporation of dilute droplets

Modeling the direct virus exposure risk associated with respiratory events

5

□ Numerical Tool: CYCLONE

- Fully turbulent flow
- Staggered mesh

- Cylindrical coordinate
- MPI parallelization
- Low Mach number NS & Point-droplet equations

Formulations

Eulerian Gas Phase (Low Mach <u>Navier</u> - Stokes)	<u>Lagrangian</u> dispersed phase (Point-droplet equations)
$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \mathbf{u}) = S_m$	$\frac{d\mathbf{x}_d}{dt} = \mathbf{u}_d$
$\frac{\partial}{\partial t}(\rho Y_V) + \nabla \cdot (\rho Y_V \mathbf{u}) = \nabla \cdot (\rho \mathcal{D} \nabla Y_V) + S_m$	$\frac{d\mathbf{u}_d}{dt} = \frac{(\mathbf{u} - \mathbf{u}_d)}{\tau_d} \left(1 + 0.15 \operatorname{Re}_d^{0.687}\right)$
$\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = \nabla \cdot \boldsymbol{\sigma} - \nabla P + S_p$	$\frac{dr_d^2}{dt} = -\frac{\mu_g}{\rho_l} \frac{\mathrm{Sh}}{\mathrm{Sc}} \ln(1+B_m)$
$\stackrel{>}{\frac{\partial}{\partial t}}(\rho E) + \nabla \cdot (\rho E \mathbf{u}) = -\nabla P \mathbf{u} + \nabla \cdot (\boldsymbol{\sigma} \otimes \mathbf{u}) - \nabla q + S_e$	$\frac{dT_d}{dt} = \frac{\operatorname{Nu}}{\operatorname{3Pr}} \frac{c_{p,g}}{c_{p,l}} \frac{T - T_d}{\tau_d} + \frac{L_v}{c_{p,l}} \frac{\dot{m}_d}{m_d}$
2-way coupling terms $S_m = -\sum_{i=1}^{\infty} \frac{dm_{d,i}}{dt} \delta(\mathbf{x} - \mathbf{x})$	$\mathbf{x}_{d,i}$)
$S_e = -\sum_{i=1}^{\infty} \frac{d}{dt} (m_{d,i} c_{p,l} T_{d,i}) \delta(\mathbf{x} - \mathbf{x}_{d,i}) \qquad S_p = -\sum_{i=1}^{\infty} \frac{d}{dt} (m_{d,i} c_{p,l} T_{d,i}) \delta(\mathbf{x} - \mathbf{x}_{d,i})$	$= -\sum_{i=1}^{d} \frac{d}{dt} (m_{d,i} \mathbf{u}_{d,i}) \delta(\mathbf{x} - \mathbf{x}_{d,i})$

A sketch of the 3D cylindrical domain

More details: Dalla Barba & Picano PRF 2018 and Wang et al. IJMF 2021 odeling Turbulent Spray Dynamics 4

1

DNS of an evaporating turbulent diluted jet-spray at moderate Re Modeling Lagrangian droplet within a turbulent spray with the LES method

Short-range exposure to airborne virus transmission and current guidelines

Revisiting D^2 law for the evaporation of dilute droplets

5

Modeling the direct virus exposure risk associated with espiratory events

Droplet evaporation: acetone spray

Droplets evaporation

 \blacktriangleright Lower droplet temperature w.r.t. initial value (~20 K) \blacktriangleright Wide distribution of saturation

Jietuo WANG

 $\Box \langle t_f \rangle (d_d^2/d_{d,0}^2)$: Droplets mean flight time conditioned to the square droplet diameter

- D²-law is the classical and most used model for dilute evaporation: <u>strongly</u> <u>underestimate droplet</u> <u>evaporation time.</u>
- However, the mean droplet surface decreases in an <u>almost</u> <u>linear trend, but with a small</u> <u>decay rate w.r.t. the classical</u> <u>model</u>

Jietuo WANG

Descr.

DNS of an evaporating rbulent diluted jet-spray at moderate Re Modeling Lagrangian droplet within a turbulent spray with the LES

Short-range exposure to airborne virus transmission and current guidelines

3

Revisiting D^2 law for the evaporation of dilute droplets

5

Modeling the direct virus exposure risk associated with espiratory events

This framework is so concise, readable and expressive that, since reported, it has been largely used in most public health guidelines, e.g. World Health Organization (WHO) and US Centers for Disease Control and Prevention (CDC).

 Wells, W. F. (1934). Am. J. Hyg., 20, 611-18.; Xie, X., et al. (2007). Indoor air, 17(3), 211-225; Langmuir, I. (1918). Phys. Rev. 12, 368. Jietuo WANG
 Simulation And Modeling Turbulent Spray Dynamics

UNIVERSITÀ

degli Studi di Padova

Simulation details of a sneeze

Up: sketch of the simulation setup used for the simulations; Right: summary of the simulation parameters and thermophysical properties

Jietuo WANG

Parameter	Symbol	Value	Unit of measurement							
Inlet radius	R	1.00×10^{-2}	m							
Sneezing jet temperature	T_{j}	308	к							
Sneezing jet relative humidity	RH_j	90%	-							
Maximum sneezing jet velocity	$u_{z,j}$	20	m/s							
Droplets temperature	T_k	308	К							
Mass injected liquid phase	m_l	8.08×10^{-6}	kg							
Mass injected gaseous phase	m_g	2.00×10^{-3}	kg							
Liquid mass fraction	Φ_m	4.04×10^{-3}	(H)							
Liquid volume fraction	Φ_v	4.55×10^{-6}	-							
Environment temperature	T	278 and 293	К							
Environment relative humidity	RH	50% and 90%	-							
Environment thermodynamic pressure	p_0	1.01×10^{5}	Pa							
Dynamic viscosity gaseous phase	μ_g	1.99×10^{-5}	Pa s							
Thermal conductivity gaseous phase	k_g	2.63×10^{-2}	W/(m*K)							
Latent heat of vaporization	L_v	2.41×10^{6}	J/kg							
Universal gas constant	R	2.87×10^{2}	J/(kg*K)							
Molar mass of the gaseous phase	W_g	2.89×10^{-2}	kg/mol							
Gas constant gaseous phase	R_g	2.92×10^{2}	J/(kg*K)							
Specific heat capacity at constant pressure gaseous phase	$c_{p,g}$	1.03×10^{3}	J/(kg*K)							
Specific heat capacity at constant volume gaseous phase	$c_{v,g}$	7.42×10^{2}	J/(kg*K)							
Specific heat ratio gaseous phase	γ	1.39	-							
Vapor specific heat capacity at constant pressure	$c_{p,v}$	1.88×10^{3}	J/(kg*K)							
Vapor phase gas constant	R_v	4.61×10^{2}	J/(kg*K)							
Binary mass diffusion coefficient	D	2.67×10^{-5}	m ² /s							
Molar mass liquid phase	W_l	1.80×10^{-2}	kg/mol							
Density liquid phase	ρι	1.00×10^{3}	kg/m ³							
Specific heat liquid phase	c_l	4.18×10^{3}	J/(kg*K)							
Volume fraction non-volatile material droplet	Φ_v^c	3%	-							
Prandtl number	Pr	0.782	-							
Schmidt number	Sc	0.663	-							

 \sim

Simulating sneeze: validation

Distance traveled by the front of the jet: comparison between simulations and experiments. (Insets) Qualitative visualizations obtained from experiments showing the jet/puff evolution.

> Both simulations and experiments exhibit a very similar behavior and are in excellent agreement.

Qualitative visualizations

UNIVERSITÀ

degli Studi di Padova

predictions by Wells theory, in some cases up to 200 times. (some universality) Project 4 Jietuo WANG W. F. Wells (1934). Am. J. Hyg., 20:611–618.

Descr. evap turbule

NS of an aporating La alent diluted v t-spray at sp oderate Re

Modeling agrangian droplets within a turbulent pray with the LES method Short-range exposure to airborne virus transmission and current guidelines

Revisiting D^2 law for the evaporation of dilute droplets

4

5

Modeling the direct virus exposure risk associated with espiratory events

Extended lifetime of respiratory droplets

- Chong et al. showed that "...droplets have O(100) longer lifetimes in a turbulent vapor puff at high ambient relative humidity than that predicted by the Well theory...". Our results confirm this observation.
- Although the resulting evaporation times are much larger than D^2 -law/Wells predictions, it is worth observing that the D^2 -law scaling seems to still bear some universality.

W. F. Wells(1934). Am. J. Hyg., 20:611–618, 1934; K. L. Chong et al. (2021). Phys. Rev. Lett. 126, 034502 (2021) ont Spray Dynamics

Jniversità

degli Studi di Padova

D^2 -law: a revision (very dilute regimes)

Temporal evolution of the temperature of evaporating water droplets, T_d , at $T_a=20^{\circ}C$.

> In our revised D^2 -law the droplet temperature is assumed constant but equal to asymptotic equilibrium <u>accounting for latent heat</u>

▶ **K** for
$$T_a = 20^{\circ}C$$
 & $RH_a = 50\% \rightarrow K_c = 4.4 \times 10^{-10}$; $K_r = 1.4 \times 10^{-10}$

Jietuo WANG

Università

degli Studi di Padova

Test the revised D^2 -law in respiratory jet

Coughing(Ng et al.)

Jniversità

degli Studi di Padova

Sneezing(*Wang et al.*)

> The proposed model is capable to accurately predict the mean evaporation behaviors of respiratory droplets with respect to the traditional D^2 -law /Wells theory.

Jietuo WANG

Ng, C. S. et al. (2021). Phys. Rev. Fluids, 6(5), 054303.

Jietuo WANG

UNIVERSITÀ DEGLI STUDI DI PADOVA A new framework for respiratory droplets

The present results predicted with our model are in excellent agreement with the reference data of Xie et al. (2007).

Traveling distances of drops

- ➤ Max distances:
- 5-7 m for sneezing
- 3-4 m for coughing
- $\sim 1 \text{ m speaking}$
- In Bourouiba's experimental analysis, "...Peak exhalation speeds (of sneeze) can reach up to <u>10-30 m/s</u>, creating a cloud that can span approximately <u>7-8</u> <u>m</u>..."
- Abkarian, M. et al. reported 1~2 m distance related to speaking events.
- ✓ <u>The model estimates for speaks</u> <u>and sneezes are consistent with</u> <u>previous experimental findings</u>!

- Bourouiba, L. (2016). N. Engl. J. Med., 375(8), e15. Jietuo WANG
 - Bourouiba, L. (2020). Jama, 323(18), 1837-1838.
- Abkarian, M. et al. (2020). PNAS, 117(41), pp.25237-25245.

Physical distancing & face covering

- ➤ The exposure risk is impacted by both variables, which indicates the non-existent of a universal safe distance, but more a quantitative reduction of the exposure risk with distance;
- Wearing face marks provides an excellent protection, effectively limiting the infection risk even at short physical distances, i.e. less than 1 meter.

Research Program

1 2 3 4

DNS of an Descr. evaporating Lag turbulent diluted with jet-spray at spr moderate Re

Modeling Lagrangian droplets within a turbulent spray with the LES method

Short-range exposure to airborne virus transmission and current guidelines

Revisiting D^2 law for the evaporation of dilute droplets

Modeling the direct virus exposure risk associated with respiratory events

5

- ✓ We firstly showed that, in a DNS of high-Re turbulent spray, droplets form clusters surrounded by high vapor concentration; the classical evaporation model, *D²-law*, strongly underestimate droplet evaporation time.
- ✓ We performed accurate simulations of droplet-laden turbulent puffs emitted during sneezes in a wide range of environmental conditions.
- ✓ Strong variation in droplets' evaporation or condensation in accordance with their local temperature and humidity microenvironment; and the incorrect definition of aerosols.
- ✓ Models currently used in public health guidelines grossly underestimate, by at least one order of magnitude, the actual evaporation times. Meanwhile the classical theory scaling seems to bear some universality.

- ✓ We revised the classical D^2 -law by a proper estimate of the asymptotic droplet properties, which provides a superior description of droplet evaporation with respect to the classical model;
- ✓ We proposed an effective framework for respiratory droplets to assess the virus infection risk related to the direct contagion route, with which the impact of physical distancing and facecovering on limiting infection risk has been quantified considering different environmental conditions and respiratory events.

> Publications

- <u>Wang, J.</u> & Picano, F. (2021). Modeling Lagrangian droplets within a turbulent spray with the LES method. In preparation.
- Wang, J., Dalla Barba, F., Roccon, A., Sardina, G., Soldati, A., & Picano F. (2021). Modeling the direct virus exposure risk associated with respiratory events. J. R. Soc. Interface, In press.
- Wang, J., Alipour, M., Soligo, G., Roccon, A., De Paoli, M., Picano, F., & Soldati, A. (2021). Short-range exposure to airborne virus transmission and current guidelines. *Proc. Natl. Acad. Sci. U.S.A.*, 118 (37), e2105279118.
- Dalla Barba, F., <u>Wang, J., & Picano, F. (2021)</u>. Revisiting D2-law for the evaporation of dilute droplets. *Phys. Fluids*, 33(5), 051701.
- <u>Wang, J.,</u> Dalla Barba, F., & Picano, F. (2021). Direct numerical simulation of an evaporating turbulent diluted jetspray at moderate Reynolds number. *Int. J. Multiph. Flow*, 137, 103567.
- Conferences (Oral presentation)
- 74th Annual Meeting of the APS Division of Fluid Dynamics, APS, Phoenix, Arizona, November 21-23, 2021.
- 18th Multiphase Flow Conference, HZDR, Online, November 08-12, 2021.
- EUROMECH Colloquium 621: Transport and Flexes in Dispersed Turbulent Flows, EUROMECH, Online, June 30
 July 02, 2021
- 1st BICTAM-CISM Symposium on Dispersed Multiphase Flows: From Measuring to Modeling, BICTAM-CISM, Online, March 02-05, 2021.

Jietuo WANG

- □ The project is ongoing mainly thanks to:
- the group at University of Padova: Prof. Francesco Picano and Dr. Federico Dalla Barba;
- the group in TU Vienna: Prof. Alfredo Soldati and his group members;
- Other involved collegues: Prof. G. Sardina, Dr. G. Soligo, Dr. M. Alipour, Dr. M. De Paoli;
- Financial funding from CSC: #201806250023;
- Computer resources by PRACE COVID-19 grant: COVID-DROPLETS; by the ISCRA-C project in CINECA: HiReS (HP10C3YNLC) & SnzEnv (HP10C1XSJU)

22-2 GA	NTT CHART																										
N PHD	STUDENT Jietuo Wang		D/	AT E	· · · · ·		()6/12	/202	21																	
PHD THE	ESIS Simulation and modeling spray dynamics	of turbulent	ADMI	SSIC	ον το)	F	Final	Exa	mina	ation																
				F	IRST	YEA	٩R				S	ECO	ND	YE	AR					TH	IRD	YE	AR			E	хт.
WBS NUMBER	R TASK TITLE	% OF TASK COMPLETE	T1 O N	D J	T2 FM	T: A M	3 IJ	T4 JA	S C	T1 N C	D.	T2 J F I	M A	T3 A M	J	T4 JA	4 . S	T O N	1 I D	T J F	2 • M	T A N	3 1 J	J	T4 AS	0	T1 ND
1	Training and Bibliographical Research																										
1,1	Learn the turbulent flows theory and master the coding tecniques of FORTRAN language	100%																									
1,2	Literature reviews on Trubulent Spray dynamics	100%																									
2	Simulation of turbulent spray in high Re																										
2.1	Test the existing in-house code package CYCLON	E 100%																									
2,2	Run Simulation I & collect the data	100%																									
2,3	Produce images, analyze results & write paper I	100%																									
3	Assess the parcel model in LES framework																										
3,1	Modify the code and run simulation II:LES	100%														_							_				
3,2	Collect data, produce images & write report	70%								_			_					_					_			4	
EVENT	Admission to Year II	100%																									
4,1	Review literature and collect experimental data on respiratory jets and virus tranmission	100%																									
5	transmission																										
5,1	Modify the code and run test simulation	100%																									
5,2	Run simulation III, collect the data, produce	100%																									
5,3	Reporting methodology and results (Paper II)	100%																									
6	Revised D2-law model for droplet evaporation																										
6,1	Revisit and revise the classical model	100%																									
6,2	Run DNS simulations to validate the revised D2- law model	100%																									
6,3	Reporting methodology and results (Paper III)	100%																									
EVENT	Admission to Year III	100%																									
7	Low-order modeling on direct virus transmission																										
7,1	Literature review and establish the new framework	100%																									
7,2	Validate the new model and use it to evaluate the effect of physical distancing and masks	100%																									
7,3	Reporting methodology and results (Paper IV)	100%																									
EVENT	Admission to Final Examination	0%																									
8	Writing These and Reports	50%																								4 - 1	

8

∩s

Т р м в о

Thanks for the attention

Università degli Studi di Padova