

Request of admission to the second year of the PhD Course

DAMAGE DETECTION IN AEROSPACE STRUCTURES

PhD Course in Space Sciences, Technologies and Measurements (STMS)

Curriculum: Sciences and Technologies for Aeronautics and Satellite Applications (STASA) XXXIV Cycle

PhD Student: Greta Ongaro

Supervisor: Ugo Galvanetto Co-Supervisor: Mirco Zaccariotto

Centro di Ateneo di Studi e Attività Spaziali Università di Padova

12/09/2019

TABLE OF CONTENTS

- RESEARCH BACKGROUND
- PROJECT OBJECTIVES
- WORK METHODOLOGIES AND TOOLS
 - Peridynamic Theory
 - Finite Element Method-Peridynamics (FEM-PD) coupling strategy
 - Wave propagation modelling and nonlinear ultrasonic techniques
- **TASKS COMPLETED IN THE FIRST YEAR OF PhD COURSE**
- **STUDY OF THE IN-HOUSE FEM-PD COUPLING SOFTWARE**
 - Statement of the problem: lack of global equilibrium affecting coupled methods
- FINAL REMARKS
- FUTURE WORK
- > LIST OF PUBLICATIONS

RESEARCH BACKGROUND

- Study of CCM-PD coupling methods: equipping of CCM based models with the capability to simulate crack formation and propagation
- **II. Improvement** of the in-house **FEM-PD coupling software** for possible integration into an effective SHM system
- III. Development of reliable simulations of wave propagation in the presence of cracks
- **IV.** Identification of **suitable systems of sensors** for **damage detection** by means of **simulation tools**
- **V.** Validation of numerical simulations through experimental activities

WORK METHODOLOGIES AND TOOLS (1/4)

Peridynamic Theory

Nonlocal reformulation of classical continuum mechanics (CCM) based on integro-differential equations

Each point x in the body interacts with all the points located within its neighbourhood H_x through bonds

Fundamental equation of motion for any material point of the structure:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) = \int_{H_x} \{\underline{T}[\mathbf{x},t] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{T}[\mathbf{x}',t] \langle \mathbf{x} - \mathbf{x}' \rangle \} dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t),$$

$$\mathbf{x}' \in H_x$$

where:

- ρ is the mass density
- **x** is a material point of the domain *R*
- $\mathbf{H}_{\mathbf{x}}$ is the finite neighbourhood centred at point \mathbf{x}
- δ is the horizon radius
- u is the displacement vector field
- **b** is a prescribed body force density field
- $\underline{T}[x, t]\langle x' x \rangle$ is the force density vector that point x' exerts on point x

FEM-PD coupling

Weak points of peridynamics numerical methods

1. PD methods are computationally very expensive

- **2. Bandwidth** of the stiffness matrix in PD software is **bigger** than that in CCM software
- **3.** Defining **boundary conditions** in a non-local theory introduces some difficulties

Coupling of FEM meshes with PD grids is very convenient

- Simple coupling method that can be easily introduced in commercial FE codes
- 2. PD grids applied only to portions of the model where cracks are likely to develop
 - **3.** No need to interpolate displacements or forces between PD and FEM portions
 - 4. All PD nodes have a fully internal family
 - 5. No arbitrary choice or blending functions required

Proposed FEM-PD coupling strategy

The coupling method can be easily introduced with the help of a 1D model

Internal forces acting on a node are of the same nature as the node itself

A coupling zone is defined where forces are exchanged between the FEM and PD parts of the domain

Assembly of the global stiffness matrix: equilibrium equations of FEM (PD) nodes contain only terms coming from the FEM (PD) formulation This 1D coupled model produces the following system of equations:

- $a := EA/\Delta x$, $b := cViVj/\Delta x$

- $\{u_i\}_{i=1,...,N}$ = nodal displacements, $\{f_i\}_{i=1,...,N}$ = external nodal forces
- EA = product between Young's modulus and cross-sectional area
- $Vi = A \Delta x$ is the volume associated with node i
- Δx = grid spacing of the discretized numerical model
- **c** = micromodulus constant

12/09/2019

WORK METHODOLOGIES AND TOOLS (4/4)

Wave propagation modelling and nonlinear ultrasonic techniques

As **experimental testing** is very **expensive** and **time-consuming**

 $\mathbf{1}$

It is **essential** to develop **novel computational methods** for **damage detection and evaluation**

between **materials** and **propagating waves**

Very small damages

(when signal wavelength is greater than the size of each micro-cracks) Development of reliable nonlinear ultrasonic computational tools is essential

TASKS COMPLETED IN THE FIRST YEAR OF PhD COURSE

TASK 1: Bibliographic research on Peridynamics and wave propagation State of Art

- Bond-based and state-based PD theory
- > CCM-PD coupling strategies and coupled Multiphysics problems
- Wave propagation: main features and numerical modelling techniques

TASK 2: Investigation of bond-based FEM-PD coupling software developed at the UniPD

- Study of FEM software, MATLAB environment and of bond/state-based formulations
- > Deep analysis of **FEM-PD coupling methods**: main features, strengths and weak points
- > Study of **nonlinear ultrasonic numerical tools** for damage detection and evaluation

TASK 3: Implementation of different structural elements

> Simulations on **beam** and **plate elements** and comparison with benchmark problems

TASK 4: Further development of the coupling method

- > Analysis of overall static equilibrium and numerical convergence issues
- Writing of subroutines to insert PD codes into commercial software

TASK 5: International collaborations

> Dr. Pablo Seleson (Oak Ridge National Laboratory, US): drafting of a manuscript

STUDY OF THE IN-HOUSE FEM-PD COUPLING SOFTWARE

Statement of the problem

Often-overlooked issue in the use of **coupled computational methods** \rightarrow **lack of overall static equilibrium**

- For the first time: identification of a coupling error given by the lack of overall equilibrium in static problems
- It is easy to evaluate the relative out-of-balance error by computing the out-ofbalance forces
- \succ The relative out-of-balance error is a fraction of a per cent and reduces as $\delta \rightarrow 0$
- The tolerance used in an implicit solution of a coupled numerical problem should be carefully chosen

FUTURE WORK

TASK 1: Further development and extension of the in-house FEM-PD coupling software

Extension of the bond-based FEM-PD coupling software developed at the UniPD to 3D systems

TASK 2: Development of reliable nonlinear ultrasonic numerical techniques

Damage evaluation and crack propagation modelling

TASK 3: Implementation of the adaptive refinement/coarsening approach

Implementation of the adaptive refinement approach in an integrated code for multi-dimensional analyses

TASK 4: Study of Multiphysics phenomena and implementation in FEM commercial codes

- Simulations on Multiphysics problems
- > Comparison between obtained numerical results and results available in literature

TASK 5: Further collaborations with European and extra-European research centers

- > Further investigation of the coupling method: Dr. P. Seleson, Oak Ridge National Laboratory, US
- > Validation of numerical simulation results: Prof. P. Packo, AGH UST, Krakow, Poland
- > Improvement of the knowledge on Peridynamics: **Prof. F. Bobaru**, University of Nebraska at Lincoln, US

Journal paper:

G. Ongaro, U. Galvanetto, T. Ni, P. Seleson, M. Zaccariotto, Overall equilibrium in FEM-PD coupled models, submitted to Computer Methods in Applied Mechanics and Engineering (2019)

Conference contributions:

CFRAC2019 Germany

Overall structural equilibrium in Computational Methods Coupling Peridynamics with Classical Mechanics M. Zaccariotto, T. Ni, G. Ongaro, P. Seleson, U. Galvanetto

USNCCM15 Austin

Global Equilibrium in Computational Methods Coupling Peridynamics with Classical Mechanics U. Galvanetto, T. Ni, G. Ongaro, P. Seleson, M. Zaccariotto

ICCM2019 Singapore

The Problem of Static Equilibrium in Computational Methods Coupling Classical Mechanics and Peridynamics U. Galvanetto, T. Ni, G. Ongaro, P. Seleson, M. Zaccariotto

AIDAA 2019

Computational methods coupling peridynamics with classical mechanics: out-of-balance forces in overall structural equilibrium M. Zaccariotto, G. Ongaro, T. Ni, P. Seleson, U. Galvanetto

Centro di Ateneo di Studi e Attività Spaziali Università di Padova

THANK YOU FOR YOUR ATTENTION

Greta Ongaro 1196644