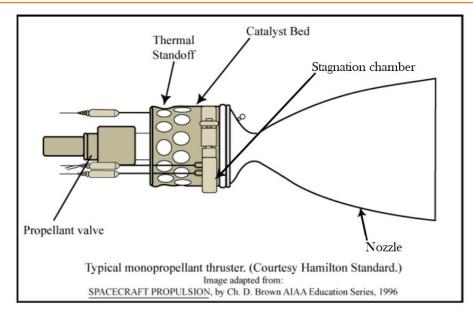
Development and Testing of HTP Monopropellant Thruster for Space Applications

Dror Nissan


University of Padova Centro di Ateneo degli Studi e Attivita Spaziali "Giuseppe Colombo"

September 13th 2019

Introduction to Monopropellant Thrusters

- Single propellant flows through a catalyst bed
- Exothermic decomposition of the propellant creates hot gas mixture
- The decomposition products are exhausted through the nozzle to obtain thrust
- Conventional propellant Hydrazine (N2H4)


Why HTP?

HTP (High Test Peroxide), concentration > 80%

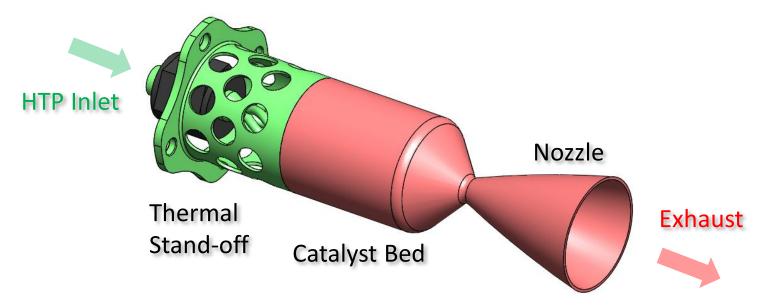
$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2 + 98 \, kJ/mol$$

- "Green" propellant, reduced pollution and toxicity
- Safety during handling, manufacturing and testing
- Storable at room temperature
 - \Rightarrow Low operative cost
- High volumetric specific impulse
 - ⇒ Compatible for space applications

In this research, the goal is to improve TRL of HTP monopropellant thruster

HTP Monopropellant Thruster

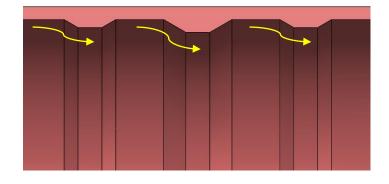
4/14


Present Work

- Motor Design
- CFD investigation of channeling phenomena
- Thermal analysis of the nozzle
- Structural analysis
- Implementation of the fuel feeding line for the experimental set-up

Motor Design

Main Characteristics:

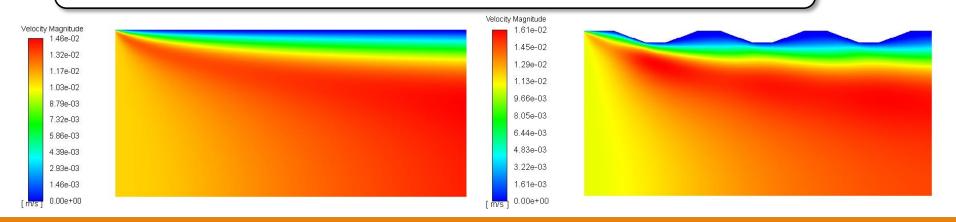

- Additive Manufacturing (3D print)
- Minimum Components
- Multiple Configurations
- Weight Optimization ≈ 90gr

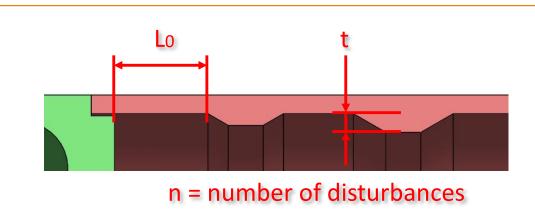
Anti-Channeling Feature

Channeling:

- By-pass of liquid HTP near the wall
- Decomposition efficiency is decreased

Suggested Solution:

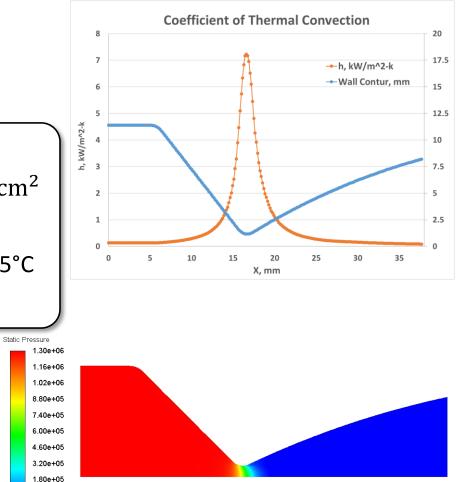

- Disturbance to the near-wall flow
- Preventing a by-pass flow
- Directing the fluid through the bulk catalyst
- CFD investigation leads to selected design


Anti-Channeling Feature

- 2D RANS Simulation
- Axisymmetric Model
- Steady-State
- Fluid: Liquid HTP
- Laminar Flow

Preliminary results:

- Boundary layer thickness increase
- Outlet mass flow at 1mm distance from the wall decrease ≈ 40%


Dror Nissan

Thermal Analysis of The Nozzle

- 2D RANS Simulation
- Steady-State
- Fluid: HTP decomposition products

Preliminary Results:

- Evaluation of Convection Rate $\approx 2.4 \text{ W/cm}^2$
- Coefficient Of Thermal Convection
- Low Temperature Gradient at the wall < 5°C
- Low Thermal Stress

Dror Nissan

Mach Number

5.11e+00

4.60e+00

4.09e+00

3.58e+00

3.07e+00

2.56e+00

2.05e+00

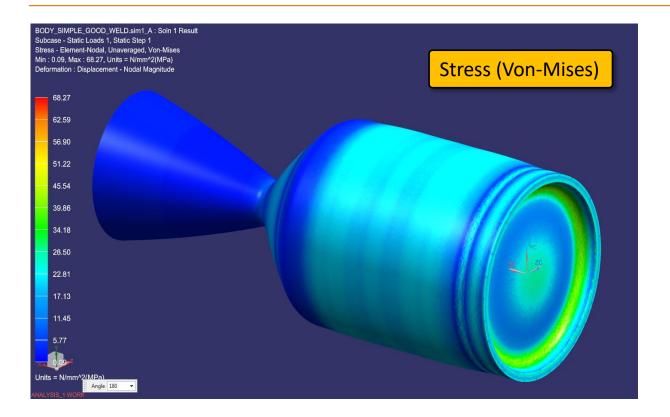
1.53e+00

1.02e+00

5.11e-01

1.27e-07

HTP Monopropellant Thruster


4.00e+04

[pascal r^{1.00e+05}

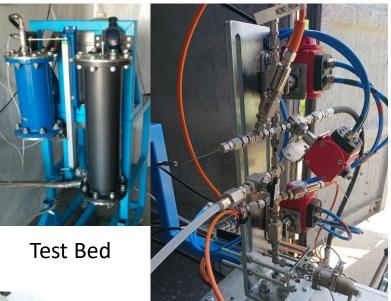
September 13th 2019 9/14

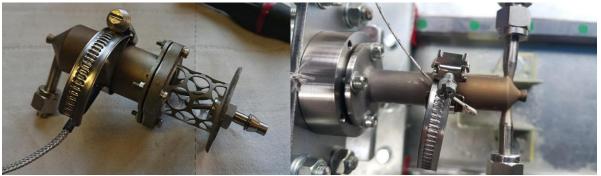
0.01 (m)

Structural Analysis

- Load Case: Max. Internal Pressure
- High Safety Factor

HTP Monopropellant Thruster


September 13th 2019


10/14

Experimental Activity

Equipped Test Facility

Various Monopropellant Motors (other programs)

Dror Nissan

HTP Monopropellant Thruster

September 13th 2019 11/14

Future Work

- Motor Production
- Experimental Set-Up Modification Fast Response Valve for Pulse

Mode Operation

- First Fire Test Campaign
- Motor Scaling Design, Production and Test

PhD Activity

Level	Work Package	Hours		1st `	Year		2nd Year				3rd Year				
1.0	Bibliographic Research	210	150	60											
1.1	State of the Art Research	70	70												
1.2	Methods of Numerical Analysis	70	40	30											
1.3	Methods of Experimental Analysis	70	40	30											
2.0	Numerical Investigation	1200	150	250	330	270	200								
2.1	Motor design	150	100	50											
2.2	Injector Design	150	50	100											
2.3	Thermal Analysis	150		100	50										
2.4	Test Matrix	350			200	150									
2.5	Data Analysis	300			80	120	100								
2.6	Numerical Correleation	100					100								
3.0	Experimental Activity	700					100	350	250						
3.1	Experimental Set-up	250					100	150							
3.2	Test Matrix	300						150	150						
3.3	Data Analysis and Validation	150						50	100						
4.0	Motor Scaling Test	950							100	270	330	250			
4.1	Up-Scaled Motor Design and Analysis	300							100	200					
4.2	Experimental Set-up	100								70	30				
4.3	Test Matrix	350									250	100			
4.4	Data Analysis and Validation	150									50	100			
4.5	Experimental Correleation	50										50			
5.0	Exploitation	100											100		
	Spacecraft / Satellite Attitude Control and														
5.1	Main Propulsion System	50											50		
5.2	Engine Comparison / Market Analysis	50											50		
6.0	Thsis and Documentation	600				50				50		100	200	200	
	Total Hours	3760	1260				1320					1180			

Thank you for your attention

Any questions?

Dror Nissan

HTP Monopropellant Thruster

September 13th 2019 14/14