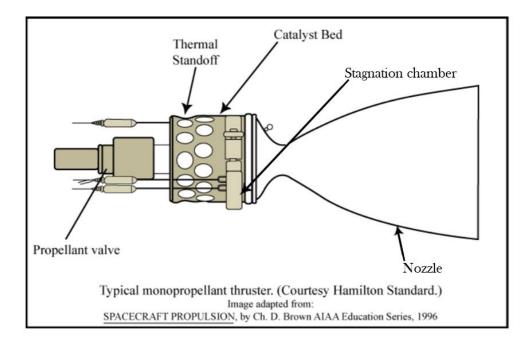
Development and Testing of HTP monopropellant thruster for space applications

Dror Nissan

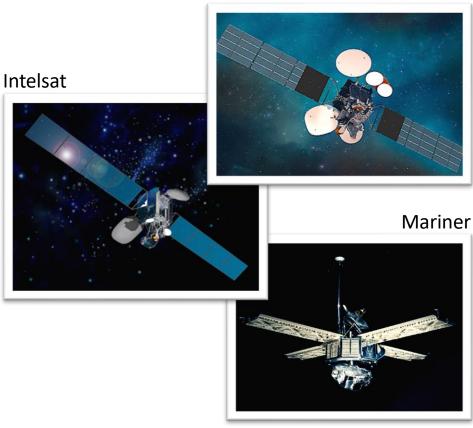

University of Padova Centro di Ateneo degli Studi e Attivita Spaziali "Giuseppe Colombo"

October 26th 2018

Introduction to Monopropellant Thrusters

- Single propellant flows through a catalyst bed
- Adiabatic decomposition of the propellant creates hot gases
- The decomposition products flow through the nozzle to obtain thrust
- Conventional propellant Hydrazine (N2H4)

Applications of Monopropellant Thrusters


RCS for micro-launcher upper stage

ALTAIR Orbital Module

Satellites or space vehicles maneuvering and de-orbiting

Amos 8

Dror Nissan

HTP Monopropellant Thruster

Main Characteristics

- Relatively low decomposition temperature
- No thermal protection
 - ⇒ Simple motor structure

- Stop and restart capability
- Throttling
 - ⇒ Operational versatility

HTP Monopropellant Thruster

Technology Readiness Level (TRL)

- Large variety of monopropellant thrusters are available
- Wide range of thrust capabilities
- Most of them are based on hydrazine

5N, Hydrazine

440N, Hydrazine

3100N, Hydrazine

Dror Nissan

HTP Monopropellant Thruster

October 26th 2018

5/11

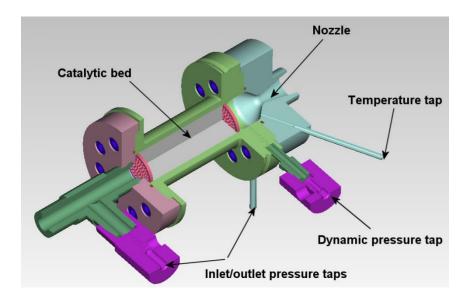
Why Hydrogen Peroxide?

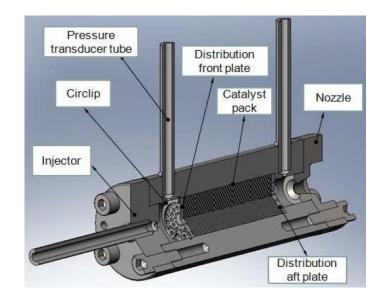
HTP (High Test Peroxide), concentration > 80%

$$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2 + 98 \, kJ/mol$$

- "Green" propellant, reduced pollution and toxicity
- Safety during handling, manufacturing and testing
- Storable at room temperature

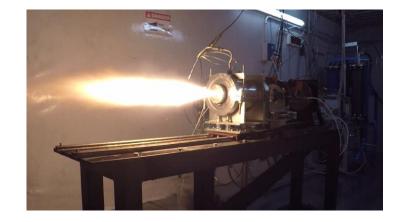
 \Rightarrow Low operative cost


High volumetric specific impulse


⇒ Compatible for space applications

HTP Monopropellant Thrusters

- Growing interest in the use of "green" propellants, leads to an extensive work on the field of HTP propulsion technologies
- Most of this work is based on lab-scale design thrusters
- In this research, the goal is to improve TRL of HTP monopropellant thruster


HTP Monopropellant Thruster

7/11

PhD Activity

- Development of a flight-design thruster
- Fire tests
- Motor scaling tests

- Achievements:
 - High efficiency
 - Short response time
 - Weight and volume optimization

HTP Monopropellant Thruster

Propulsion Group Test Capability

Equipped Test Facility

Test Bed

HTP Concentrator

Dror Nissan

HTP Monopropellant Thruster

October 26th 2018 9/11

PhD Activity

Level	Work Package	Hours		1st `	Year		2nd Year				3rd Year				
1.0	Bibliographic Research	210	150	60											
1.1	State of the Art Research	70	70												
1.2	Methods of Numerical Analysis	70	40	30											
1.3	Methods of Experimental Analysis	70	40	30											
2.0	Numerical Investigation	1200	150	250	330	270	200								
2.1	Motor design	150	100	50											
2.2	Injector Design	150	50	100											
2.3	Thermal Analysis	150		100	50										
2.4	Test Matrix	350			200	150									
2.5	Data Analysis	300			80	120	100								
2.6	Numerical Correleation	100					100								
3.0	Experimental Activity	700					100	350	250						
3.1	Experimental Set-up	250					100	150							
3.2	Test Matrix	300						150	150						
3.3	Data Analysis and Validation	150						50	100						
4.0	Motor Scaling Test	950							100	270	330	250			
4.1	Up-Scaled Motor Design and Analysis	300							100	200					
4.2	Experimental Set-up	100								70	30				
4.3	Test Matrix	350									250	100			
4.4	Data Analysis and Validation	150									50	100			
4.5	Experimental Correleation	50										50			
5.0	Exploitation	100											100		
	Spacecraft / Satellite Attitude Control and														
5.1	Main Propulsion System	50											50		
5.2	Engine Comparison / Market Analysis	50											50		
6.0	Thsis and Documentation	600				50				50		100	200	200	
	Total Hours	3760	1260				1320					1180			

Thank you for your attention

Any questions?

Dror Nissan

HTP Monopropellant Thruster

October 26th 2018 11/11