

## Study and Development of a Fluidic System for lodine-fed Magnetically Enhanced Plasma Thruster (MEPT)

Marco Minute - 34th Cycle

Supervisor: Dr. Nicolas Bellomo Admission to the final examination - 15/12/2021







### 1. Framework and Statement of the Problem

- 2. Research Project
- **3. Performed Activities**
- 4. Conclusions





### FRAMEWORK AND STATEMENT OF THE PROBLEM

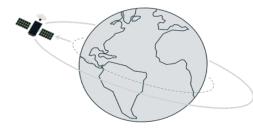
Marco Minute

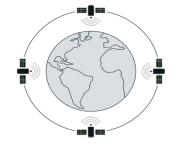


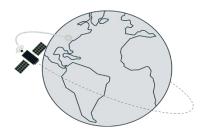


The Magnetically Enhanced Plasma Thruster (MEPT) is an innovative low-cost electric propulsion system able to increase small spacecrafts mobility, opening new unconventional mission scenarios.

**T4i** is engaged in the design and development of **REGULUS**, a complete propulsion module based on the MEPT. The module is intended for CubeSat platforms ranging in size from 6 U to 24 U, providing:


- 0.25-0.65 mN of Thrust
- Isp up to 650 s
- input power lower than 60 W

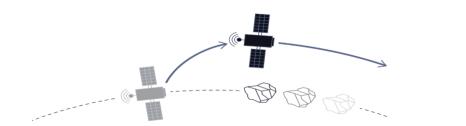












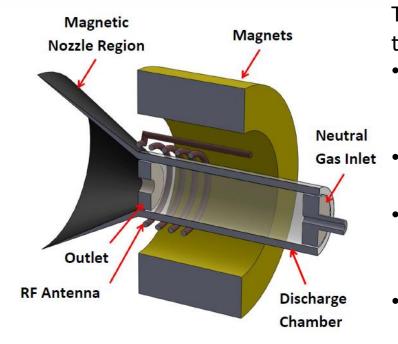
Altitude-changes

Formation flight continuous operations Station keeping

Decommissioning



#### **Collision avoidance**

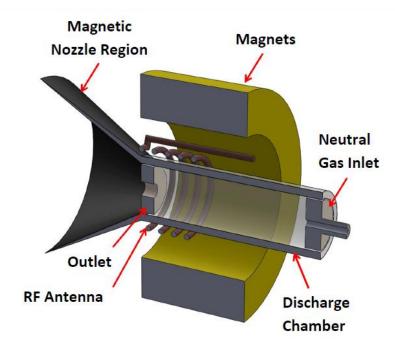



#### **Continuous drag compensation**

Study and Development of a Fluidic system for iodine-fed Magnetically Enhanced Plasma Thruster (MEPT)








The main components of MEPT, the core technology of REGULUS, are:

- A **fluidic line** which transfers the neutral gas propellant from a storage tank to the **discharge chamber**.
- A **discharge chamber** inside which the neutral gas is ionized
- A RF antenna, in the MHz frequency range, which generates the electromagnetic (EM) fields for gas ionization
- **Magnets** producing a magnetostatic field to enhance the plasma confinement and provide the magnetic nozzle effect.







### Advantages:

- Absence of electrodes immersed in the plasma
- Good power scalability
- Adaptability to different propellants
- No need for a neutralizer

### **Disadvantage:**

• High thermal load



### **MEPT: Iodine Propellant**



MEPT can work with different propellants (such as Ar, Kr, Xe, Air, CO2). Because of this last feature it seems extremely promising to investigate the employment of lodine as a propellant, which is particularly appealing for space applications.

#### Why lodine Propellant?

- It costs only 1/5 compared to Xenon
- It can be stored as solid
- No pressurized tank

#### Disadvantages:

- Chemically reactive
- Non-trivial thermal control



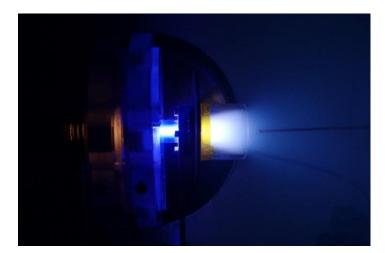




### **RESEARCH PROJECT**

Marco Minute

Study and Development of a Fluidic system for iodine-fed Magnetically Enhanced Plasma Thruster (MEPT)


9







The research program was focused mainly on the design of an innovative low cost fluidic system for Iodine fed Magnetically Enhanced Plasma Thruster, in order to use it on a smallsat platform.





#### The fluidic subsystem must provide a **fixed mass flow rate of 0.1 mg/s ±10%** to the thruster.

Study and Development of a Fluidic system for iodine-fed Magnetically Enhanced Plasma Thruster (MEPT)





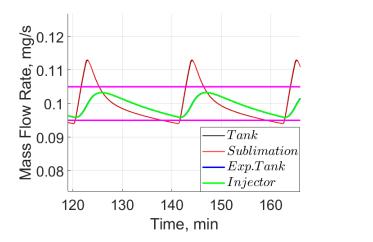


- 1. Study and development of the **mass flow control system** by means of thermal management strategy, in order to grant the proper **sublimation rate** and to avoid the **re-condensation**.
- 2. Development of a proper **software tool** to design and study the system from a thermal and fluidic point of view.
- 3. Testing of **the mass flow control system with Iodine propellant.**

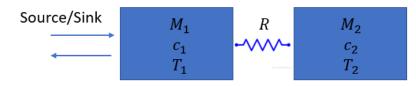




### **PERFORMED ACTIVITIES**


Marco Minute







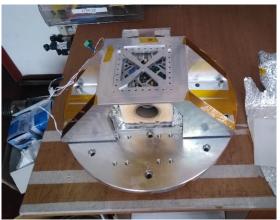

A Thermal Lumped Parameter Model was developed in order to simulate the thermal behaviour of the system.



M = mass c = specific heat T = Temperature R = radiative/conductive resistance



A Fluidic Model, coupled with the thermal one, was developed and was used to study the mass flow control system.

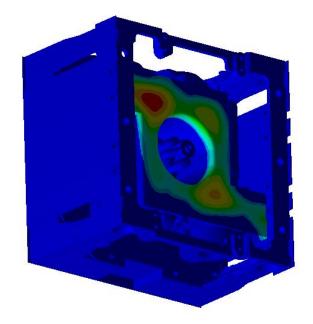



Tests

The following tests have been performed:

- Validation of the numerical model
- Tuning of the thermal control loop
- Calibration of the sensors
- Functional tests in vacuum with the thruster module (heating, ignition, thrusting and cooling)
- TVAC










The experimental campaign showed the limits of the actual fluidic system:

- Manifold and tank shall be thermally decoupled in order to reduce re – condensation spot of iodine
- Pressure control can be speed up acting both on valves and heaters
- **Total impulse** shall be increased in order to meet the Cubesat market requests.
- Power consumption shall be reduced







Due to the high compactness of the fluidic system driven by the tight volume budget, the system suffers from a severe case of "butterfly effect": *a small change in the design can cause dramatic unwanted changes to the system.* 

In other words, the **thermal, mechanical, fluidic, and functional requirements** of the fluidic system must be addressed in a holistic way - tank and manifold altogether.

NIVERSITĂ

di Padova





| Parameter                                 | Before | After |
|-------------------------------------------|--------|-------|
| Stored iodine<br>[kg]                     | 0.5    | 2     |
| Dry Mass [kg]                             | 0.7    | 1     |
| Volume [U]                                | 0.5    | 1     |
| Normalized<br>power<br>consumption<br>[-] | 1      | < 0.5 |





### CONCLUSIONS

Marco Minute

Study and Development of a Fluidic system for iodine-fed Magnetically Enhanced Plasma Thruster (MEPT)

18







- ✓ Bibliography Research
- ✓ International Papers

✓ Numerical Models

- ✓ Thermal Model
- **Fluidic Model**
- Coupling
- ✓ Validation
- ✓ Design and Development
  - ✓ Mass Flow Control System
  - ✓ Re Design
- ✓ Calibration and Test
- ✓ Thermal Control
- Mass Flow Control

#### Legend

- ✓ Finished
- In progress
- **D** To start







### Future works could be focused on:



### Testing

Of the new fluidic module.



#### **New instruments**

To work with iodine, like a flight mass flow meter.



#### **Chemical compatibility**

Improve the know-how on iodine and its compatibility with metals/plasics.

# Thanks for the attention



E R S



Università degli Studi di Padova