

26/10/2018

1

UNIVERSITA' DEGLI STUDI DI PADOVA

Corso di Dottorato in Scienze, Tecnologie e Misure Spaziali

Study and Development of a Fluidic System for Iodine-fed Mini Helicon Thruster (MHT) Motors

Marco Minute

Table of Contents:

WHY

- 1. Introduction
- 2. Mini Helicon thruster
- 3. Iodine Propellant

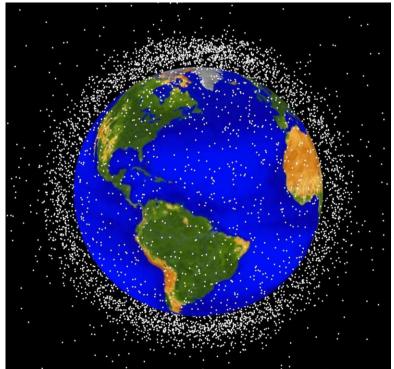
WHAT

- 4. Aim of the Project
- 5. Research Activity

- 6. Methodology
- 7. Timing

WHY

Introduction


Università degli Studi di Padova

Propulsion systems available in the market **are usually tailored for big satellites**

Mobility is currently not affordable for nano-satellites (CubeSats) mainly due to **high costs**: propulsion systems available on the market could impact for **more than 80% of the total satellite costs**

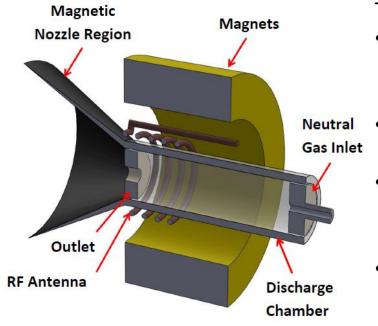
There is a **strong demand for satellite mobility**. Operators of the low cost space market are looking for new propulsion solutions which will enable:

- Formation flying satellite missions
- Satellite positioning
- Drag compensation
- Orbit raising
- Decommissioning

Mini Helicon Thruster

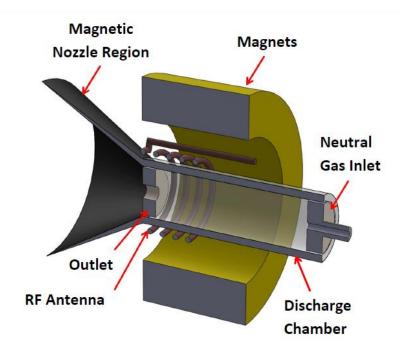
Università degli Studi di Padova

The Mini Helicon Thruster (MHT) is an innovative low-cost electric propulsion system able to increase small spacecrafts mobility, opening new unconventional mission scenarios.


T4i is engaged in the design and development of a complete propulsion module based on the MHT. The module is intended for CubeSat platforms ranging in size from **6 U** to **24 U**, providing:

- 0.8 mN of Thrust
- Isp up to 900s
- input power lower than 60 W

Mini Helicon Thruster



The main components of MHT are:

- A **fluidic line** which transfers the neutral gas propellant from a storage tank to the **discharge chamber**.
- A **dielectric tube** inside which the neutral gas is ionized
- A RF antenna, in the MHz frequency range, which generates the electromagnetic (EM) fields for gas ionization
- **Magnets** producing a magnetostatic field to enhance the plasma confinement and provide the magnetic nozzle effect.

Mini Helicon Thruster

Advantages:

- Absence of electrodes immersed in the plasma
- Good power scalability
- Adaptability to different propellants
- No need for a neutralizer

Disadvantage:

 High thermal load due to plasma

Iodine Propellant

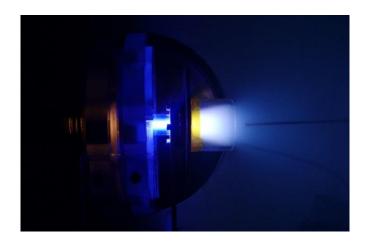
MHT can work with different propellants (such as Ar, Kr, Xe, Air, CO2). Because of this last feature it seems extremely promising to investigate the employment of **Iodine as propellant**, which is particularly appealing for space applications.

Why lodine Propellant?

- It costs only 1/5 compared to Xenon
- It can be stored as solid
- High density

Disadvantages:

- Chemically reactive
- Never flown before


WHAT

Aim of the Project

Università degli Studi di Padova

The research program will be focused mainly on the design of an <u>innovative</u> low cost fluidic system for **Iodine fed Mini Helicon thruster**, in order to use it on a **Cubesat** platform.

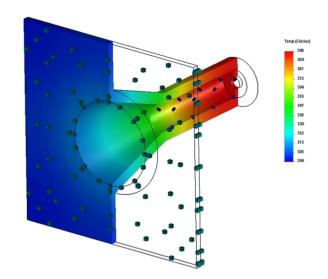
Research Activity

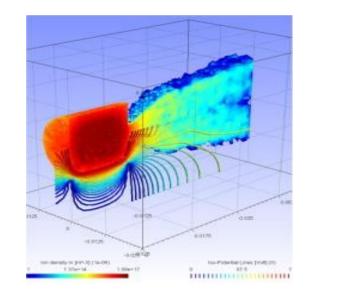
- Development of an innovative low cost Mass Flow Meter for lodine 1. fed MHT.
- 2. Development of the **mass flow control** by means of thermal management strategy, in order to grant the proper sublimation rate and to avoid the re-condensation.
- 3. Design and Optimization of the complete **Fluidic System**, also taking into account the coupled thermal and **plasma** problem.
- Testing of **lodine**. 4.

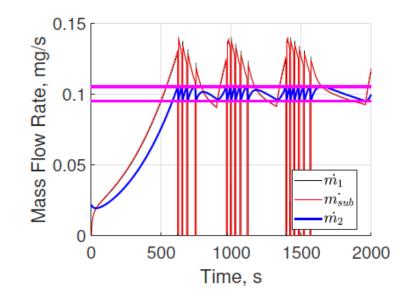
The system will be developed and optimized following a rigorous numerical-experimental methodology.

HOW

Methodology




Università degli Studi di Padova


- 1. Bibliography Research
 - International Papers

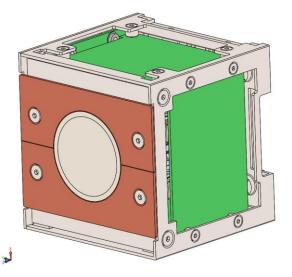
2. Numerical Models

- Fluidic Models
- Thermal Models

Methodology

Università degli Studi di Padova

3. Design and Development


- Mass Flow Meter
- Mass Flow Control System
- Fluidic System

4. Calibration and Test

- Mass Flow Meter
- Mass Flow Control System
- Fluidic System

GANTT CHART

PHD ST	TUDENT	Marco Minute	DATE	26/10/2018
PHD TH	HESIS	Study and Development of a Fluidic System for lodine fed Mini Helicon Thruster (MHT) motors	ADMISSION TO	First Year

						FIRS	T Y	EAR							SI	ECOI	OND YEAR						THIRD YEAR									
WBS NUMBER		% OF TASK	т	1		T2	Τ	Т3		T4			T1		1	Г2	Τ	Т3		T4	4		T1		T:	2		тз		T4	4	
	TASK TITLE	COMPLETE	0	N D	J	FΝ	I A	м	J	J	A	s	л с	D	J	FN	A	м	J,	JA	S	0	Ν	D	JF	м	Α	м	J,	J A	S	
1	State of Art Activity																															
1.1	Bibliography Reseach	50%																														
1.2	Method of Numerical Analysis	0%																														
1.3	Method of Experimental Analysis	0%																														
2	Numerical Analysis																															
2.1	Definition of the Driving Parameters	0%																														
2.2	Time-Dependent Fluidic Model	0%																														
2.3	Thermal Lumped Parameter Model	0%																														
2.4	Finite Element Analysis	0%																														
3.0	Design and Development																															
3.1	Design of the Mass Flow Meter	0%																														
3.2	Design of the Mass Flow Control SubSystem	0%																														
3.3	Design of the Fluidic System	0%																														
4	Testing																															
4.1	Test Campaign (Mass Flow meter)	0%																														
4.2	Test Campaign (Mass Flow Control Subsystem)	0%																														
4.3	Test Campaign (Fluidic System)	0%																														
5.0	Thesis	0%																														
		0%																														

Thanks for your attention...

... any questions?