

Title of PhD project : Geological Mapping and Structural analysis of Fault network in Mars and Mercury

Supervisor: Prof. Matteo Massironi

Co- Supervisor:

PhD student: El Yazidi Mayssa

12th September 2019, at 2:20 PM, Seminar Room, CISAS

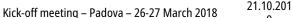
34° Cycle

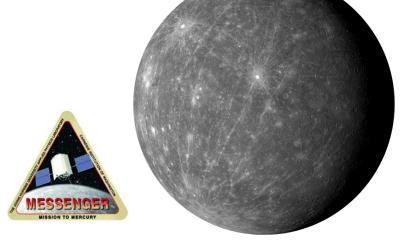
Corso di SCIENZE TECNOLOGIE E MISURE SPAZIALI

Curricoli: Misure meccaniche per l'ingegneria e lo spazio,

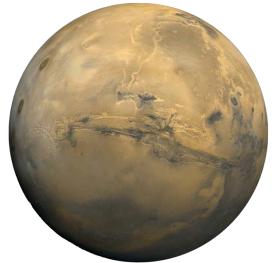
Centro di Ateneo di Studi e Attività Spaziali "Giuseppe

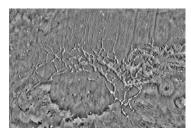
Colombo" - CISAS





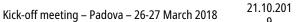
Targets: Mars and Mercury




1:3M geological mapping of the Eminescu quadrangle (H9)

© NASA

Noctis Labyrinthus, forming the western end of Valles Marineris



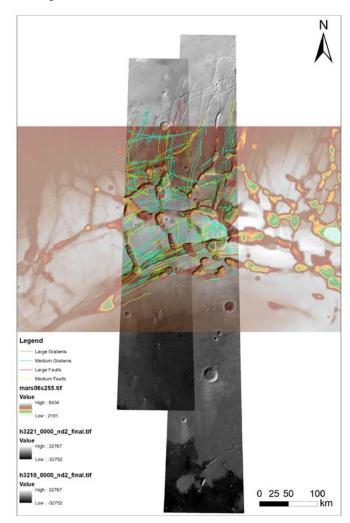
Mars

Data and Methodology

Base map: h3210_0000 and h3221_0000 orthoimages (HRSC_Mars

Express_12 to 13m/Pixel of SP).

DEM: from MOLA (~460 m/pixel) and HRSC (~100 m/pixel)

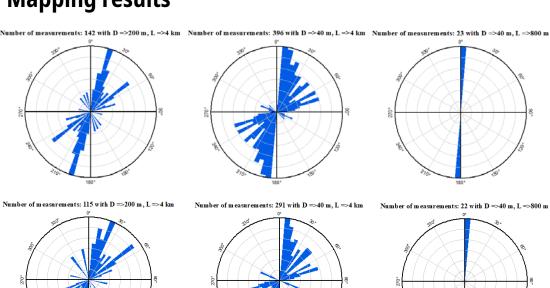

Number of fractures population

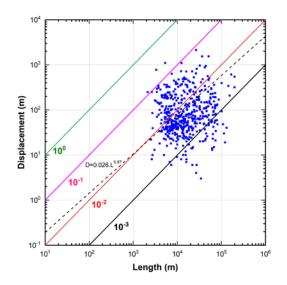
	Faults		Grabens								
\$1 142	S2	S3	S1	S2	S3						
142	396	23	115	291	22						

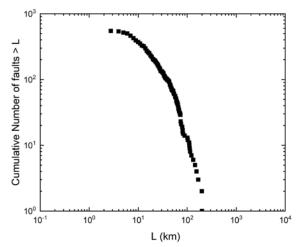
S1: D =>200m and L => 4 km

S2: D =>40m and L => 4 km

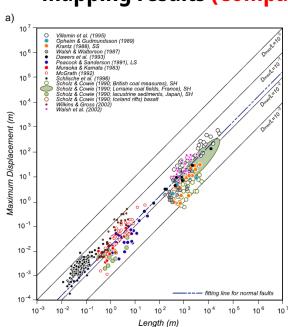
S3: D =>40m and L => 800 m

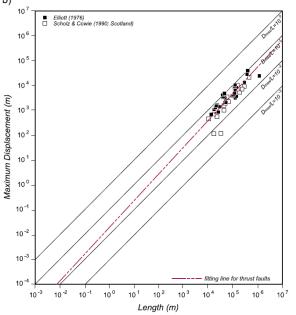


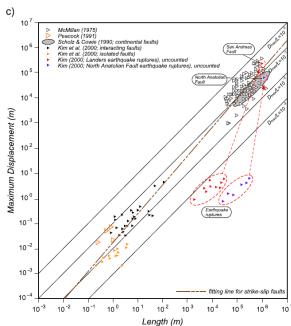




Mapping results

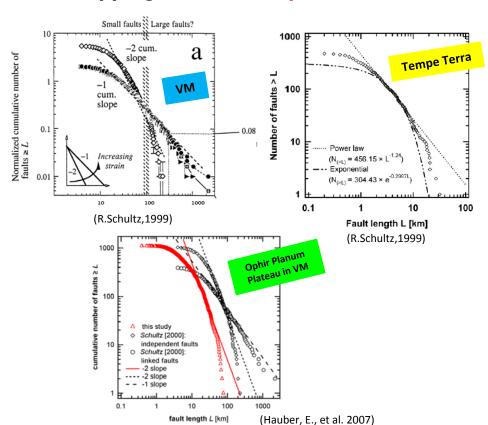


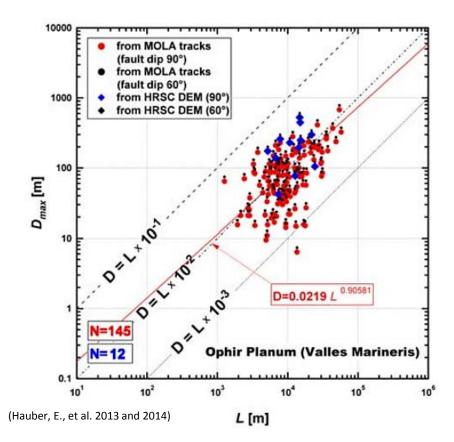




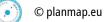
Mapping results (Compared results)

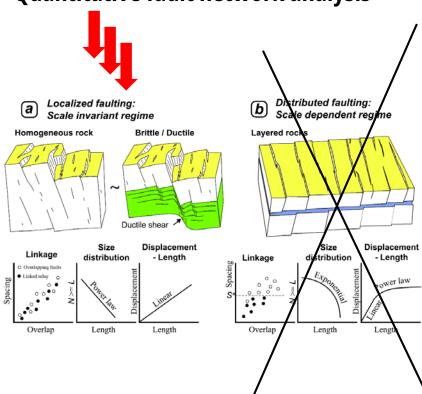
(Y.Kima and D.Sandersonb, 2004)

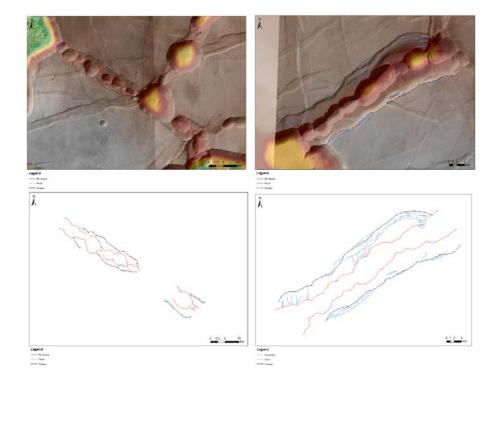




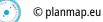
Mapping results (Compared results)

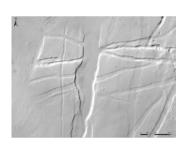


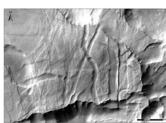


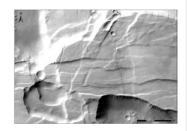


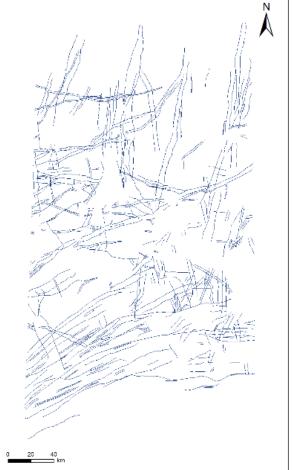
Quantitative fault network analysis



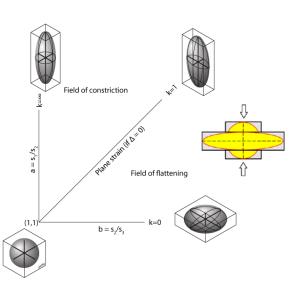


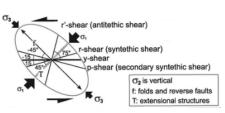


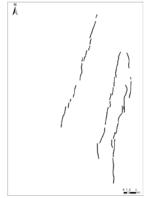


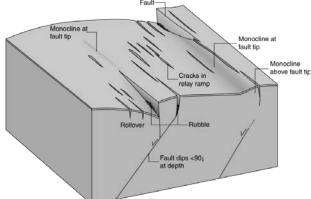

Quantitative fault network analysis

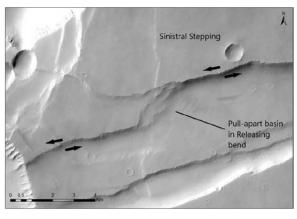
- The nature of the materials in the subsurface.
- The relationship between Faults, Grabens and pit chains.
- The driving processes for the formation of such complicated zone in Mars.
- The nature of the stress field.
- Fault kinematics.



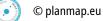


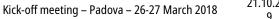


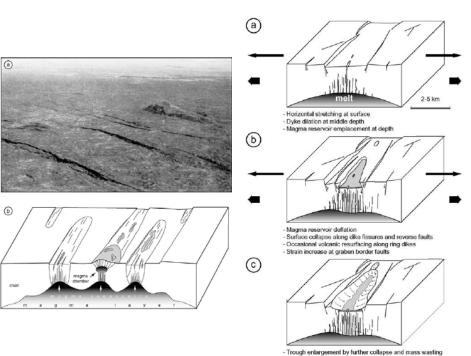

Quantitative fault network analysis

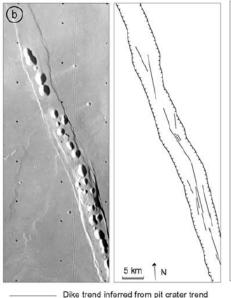


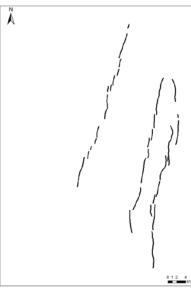
Shear zone represented by left lateral strike slip fault that generate the apparition of transtensional Pull-apart basin in releasing bend.










Quantitative fault network analysis

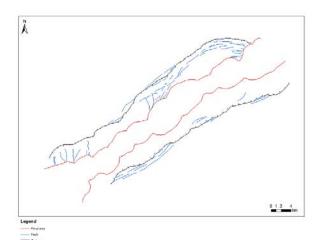
Segmented faults display, connected via relay ramp.

Approximate graben boundary

(Mege et al,2003)

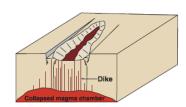
Quantitative fault network analysis

Interconnection between grabens and aligned pits



Earlier extensional stress field

+


Magmatic processes

Main driving processes

Legend

Collapsed Magma Chamber

Problems and Issues

What has been done

- Rose diagrams with a specific new scale of length and displacement dimensions.
- D_{max} vs L plot (In the frame to carry out a relationship between the displacement of the extended faults and pit chains).
- Negative power law for the cumulative frequency plot.
- Analyses of the results carried out.

What we still need

- DTMs cover the whole area of Stuy with better resolution.
- HR and DTM:
 - HRSC (12.5m/px)
 - DEM Mola (460m/px)

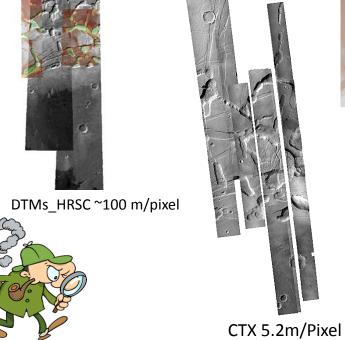
Not enough!

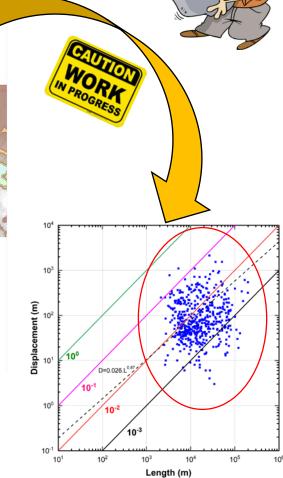
- Extend the area and study faults with large size only?
- CTX images as a Basemap ? (Incomplete mosaic)

What we are going to do

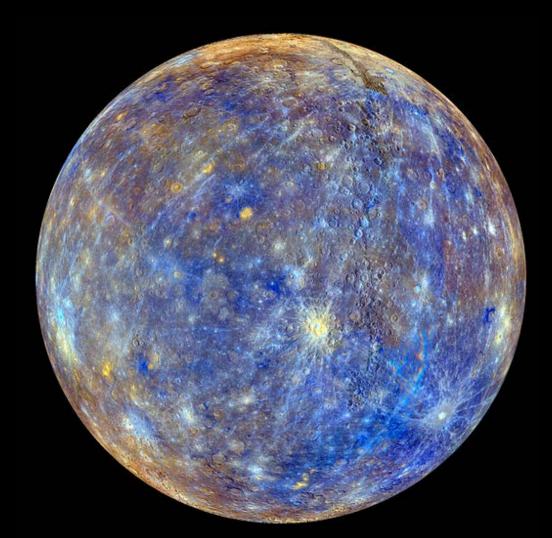
- Look for a availible HRSC DTMs.
- Look for Incomplete mosaic of CTX orthoimages for better surface analyses.

Task must finish on *31 December 2019.*





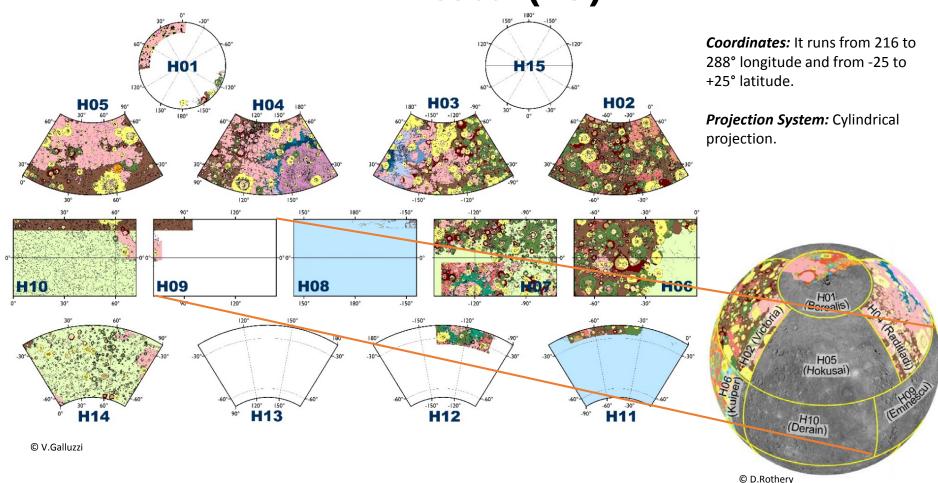
Problems and Issues



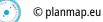
problems

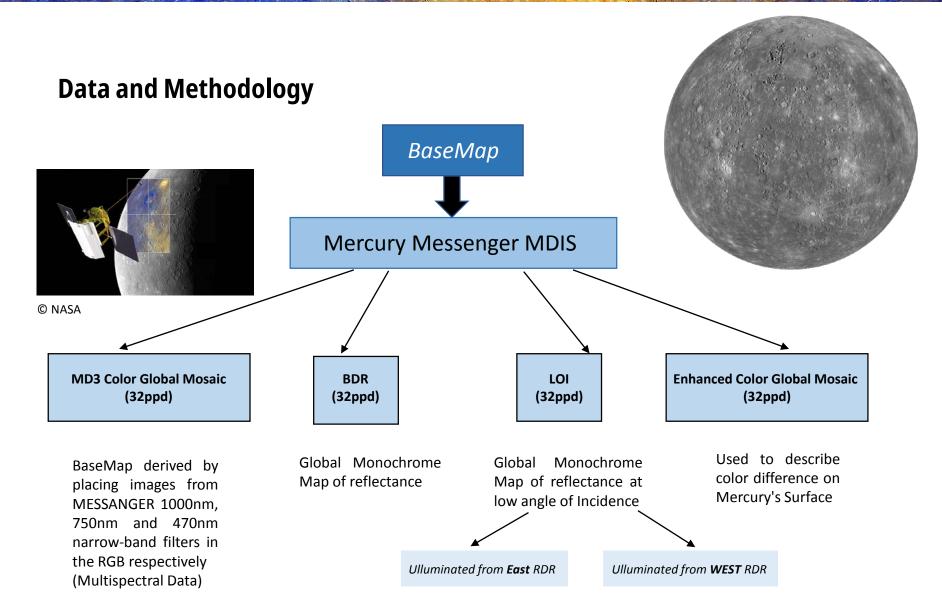
Mercury

Kick-off meeting - Padova - 26-27 March 2018



General Context of the chosen quadrangle: Eminescu (H9)





Data and Methodology

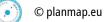
Scale: 1: 3000000 Output Scale.

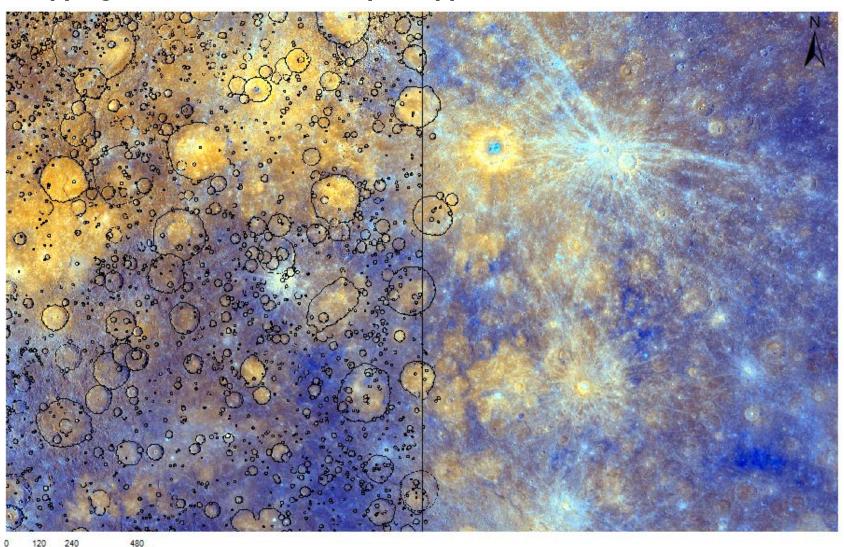
Symbology: Mainly based on the Federal Geographic Data Committe (FGDC), Digital Cartographic Standard for Geologic Map Symbolization prepared by USGS (The same Symbology used by V.Galluzzi)

Mapping status

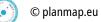
Morphostratigraphic map

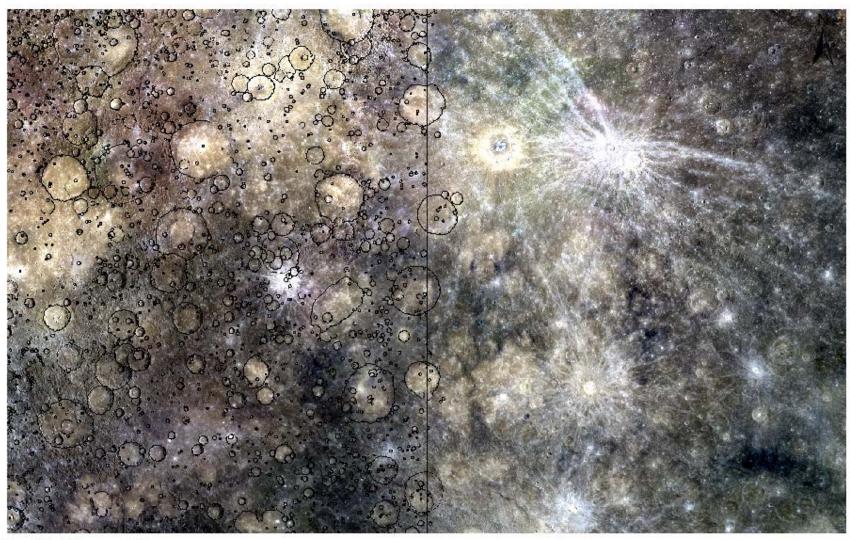
• Craters rim mapped: 100%





Mapping status (GlobalColor_equi_64ppd)

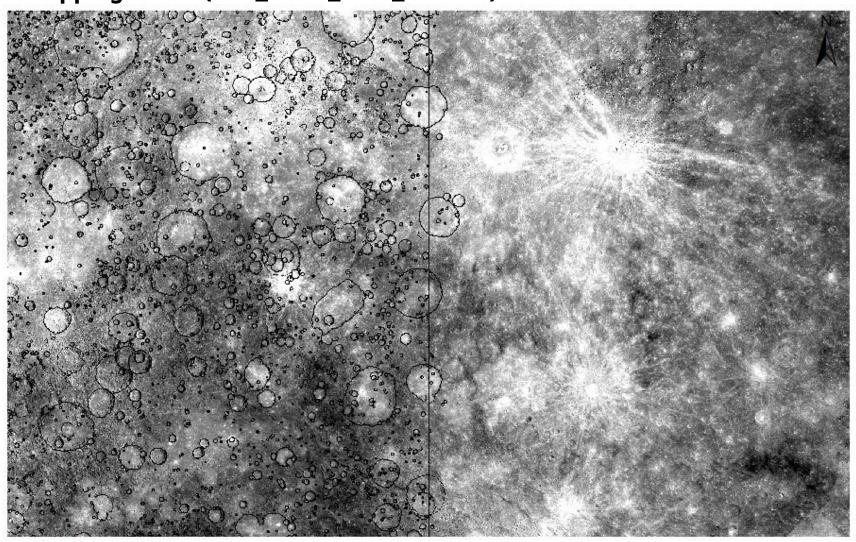




Kick-off meeting – Padova – 26-27 March 2018

Mapping status (H09_GlobalColorMD3_64ppd)





Mapping status (H09_MDIS_LOI2_256PPD)

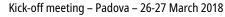
Mapping status

- ☐ H09 PointFeatures
 - Undefined point feature TYPE
 - isolated bright spots
 - isolated dark spots
 - isolated hollows
- □ H09_LinearFeatures_Morphology
 - undefined morphology
 - crest of crater rim D > 20 km
 - crest of crater rimp 5 < D < 20 km
 - crest of degraded or buried crater
 - m volcanic vent
- ☐ H09_LinearFeatures_Structures
 - Undefined Structures TYPE
 - certain fault
 - certain graben axis
 - certain thrust
 - uncertain fault
 - uncertain graben axis
 - uncertain thrust
 - wrinkle ridge

- - Undefined contact Geological contact
 - contact, approximate
 - contact, certain
- □ H09_SurfaceFeatures
 - uncertain surface features Surface Features
 - Dright material
 - cluster of hollows
 - XX dark material
 - rough ejecta
 - secondary crater chain or cluster
- □ H09_GeologicalUnits
 - No Unit UNIT
 - c1, heavily degraded crater
 - c2, degraded crater
 - c3, well preserved crater
 - dark material
 - hummocky crater floor
 - intercrater plains
 - intermediate plains
 - smooth crater floor
 - smooth plains

Not yet

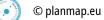
Not yet



PhD Courses and Credits

PERSONAL TRAINING PLAN OF DOCTORAL STUDENT EL YAZIDI Mayssa

Interdisciplinary Module/Activity		Lectu	rer	Expected credits	Frequency (YES/NO)	Exam (YES/NO)*	Date of exam	Attained credits	
Aerospace propulsion		Prof.Marco	Manente	4	Yes	Yes	First year	4	
Exploring the Solar System and its environment		Prof.Lucchetti/ /Prof.Pa		4	Yes	Yes	First year	4	
Space optics and detectors		Prof.Naletto/	Prof.Pelizzo	4	Yes	Yes	First year	4	
Astrophysics of the Solar System	Prof.Monica	Lazzarin	6	Yes	Yes	First year	6		
Space systems and their control		Prof.Franc Prof.Lore		0.8	Yes	No	First year	0.8	
Introduction to computational fluid dynamics	Prof.Frances	co Picano	0.4	Yes	No	First year	0.4		
Geologia ed esplorazione dei corpi planetari	Prof.Matteo	Massironi	1.6	Yes	No	First year	1.6		
Research Project Proposal/Preparing a Scientific Paper		Prof.Na	letto	2	Yes	Yes	First year	2	
Presentation of Doctoral Activities		1		0.5	-	-	First year	0.5	
Curriculum oriented seminars		Lectu	rer	Expected credits	Frequency (YES/NO)	Exam (YES/NO)*	Date of exam	Attained credits	
09 Seminars activated by STMS PhD course		-		3.6	Yes	Yes	First year	3.6	
Seminar "Space Technologies"		Giampaol	o Preti	0.06	Yes	No	First year	0.06	
Seminar "Galileo: The European infrastructure for global navigation satellites system services"	1	Giuditta Mo	ontesanti	0.06	Yes	No	First year	0.06	
OTHER EDUCATIONAL ACTIVITIES									
Title of the activity (Date/Period/University)		Lecturer	Duration of activity	Expected credits	Frequency (YES/NO)	Exam (YES/NO)	Date of exam	Attained credits	
Educational support for Planetary Geology Mapping-INAF-IAPS di Roma.	Prof.V	alentina Galluzzi	40 hours	1.6	Yes	No	First year	1.6	
Workshop "Planetary Mapping and Virtual Observatory"		-	24 hours	0.96	Yes	No	First year	0.96	
School "Detectors and Electronics for High Energy Physics,									
Astrophysics, Space applications and Medical Physics"Legnaro		-	40 hours	1.6	Yes	No	First year	1.6	
(Laboratori Nazionali di Legnaro dell'INFN)									
Total of expected ECTS credits attaina	ivities (>30):	31.18			n educational August 2019):	31.18			

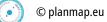


Gantt Chart

GANTT CHART

PHD STUDENT	EL YAZIDI Mayssa	DATE	9/12/2019
PHD THESIS	Geological Mapping and Structural analysis of Fault r	ADMISSION TO	Second Year (2019-2020)

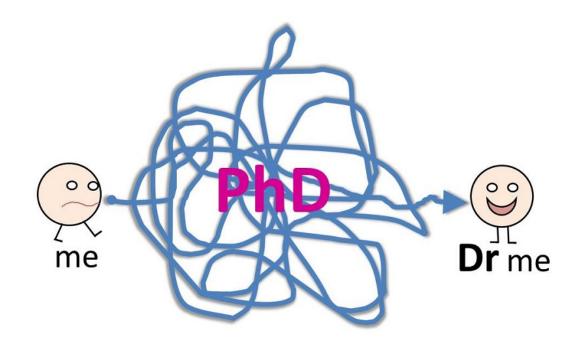
						FIRS	T YE	AR					S	ECO	ND Y	EAR						1	THIRD	YE/	\R			
WBS	TASK TITLE	% OF TASK		T1		T2		T3		Г4		1		T2	$oxed{\mathbb{L}}$	Т3	$oxed{\mathbb{L}}$	T4		T1		T.			T3		T4	
NUMBER TASK TITLE		COMPLETE	0	N D	J	FM	I A	M J	J	A S	0 1	N D	J	FN	A N	M	J	Α	s o	N	D	J F	M	Α	М .	J	Α	S
1	State of the Art Research																											
1.1	Bibliography Research	50%																										
1,2	Collect of different Data, Raster layers and DEMs Images	90%																										
1,3	Methods and tools of Study and analyses	70%																										
1,4	A knowledge of the basic notion of the geological mapping	90%																										
1,5	A knowledge of the basic notion of the 3D Geo-Modeling,	0%					П																					
2	Noctis Labyrinthus - Mars																											
2.1	Mapping and measuring the faults and studying their kinematic properties	80%	П									Т																
2,2	Quantitative fault network analysis (Carrying out different diagrams)	80%	П																									
2,3	3D reconstruction of the fault network and analogue model	0%	П																									
2,4	Analyse, discuss and interpret of the results carried out	50%	П																									
3	A geological map for Eminescu quadrangle (H9) in Mercury																											
3,1	Eminescu quadrangle - H9 (Mercury) : Studying the general context of the selected qu	40%	П																									
3,2	Studing the main geological features	5%																П										
3,3	Geological maps	5%																										
3,4	Structural analysis of the fault network	0%																										
4	Discussion and Conclusion																											
4,1	The importance of this study	0%																										
4,2	The importance of the produced maps for future work in the frame of the selection of	0%																										
5	Compilation of the thesis and work reports	2%													Т			П										



Preliminary Index of my thesis project

- 1. Noctis Labyrinthus (Mars)
 - a. General view
 - Volcanic Activity
 - c. Tectonic and rifting: A complex zone with branched network of faults and grabens
- 2. Surface interconnection Grabens/Pit chains
- 3. Structural Analysis
 - Data and Methodology
 - Rose diagrams and faults kinematic
 - Dmax Vs L and cumulative frequency plot
 - d. Quantitative and qualitative analyses for the fracture
- 4. Volcano-Tectonic relationship as a superficial driving process for Noctis Labyrinthus formation.
- 5. Mercury Overview
 - a. Physical and Orbital properties
 - Magnetic field
 - Weather and exosphere
 - Surface characteristics
 - Stratigraphy, Topography and Surface geology
 - Hollows, a mysterious volatile substance and the sublimation phenomena
 - Cratering and Mercurain chart
 - Interior
 - Volcanic Activity
- 6. Mercury Space Mission
 - a. Mariner 10
 - b. MESSENGER

 - c. BepiColombo
- 7. New geological mapping for Eminescu quadrangle (H9) with the scale 1:3M
 - General context of the project as a part of PlanMap
 - Data and Methods
 - Geological maps
 - Morpho-stratigraphic map
 - b. Chrono-stratigraphic map
 - 3D Geo-Modeling: Volume, Depth and effusion estimation
 - e. Analyses and Interpretation
- Stress field comparison between Mars and Mercury fault network
- Purpose of this study



Thank you for your attention

