Study and Development of a H_2O_2 based Liquid Rocket Engine

Marco Santi

University of Padova Centro di Ateneo degli Studi e Attività Spaziali "Giuseppe Colombo"

September 13th 2018

Introduction to Liquid Rocket Motors

Main characteristics

- Oxidizer and fuel stored in tanks
- Two controllable feeding lines
- Different cooling system solutions

Advantages

- High specific impulse
- Operation flexibility
 - Multiple shut down and re-ignition
 - Mass flow throttling
 - ◊ Mixture ratio control
- Long burning times

Disadvantages

- High manufacturing costs
- Technological complexity

Cooling systems

Passive methods

- Very expensive materials
- Small scale thruster

200N Bipropellant Thruster, Orbital Propulsion Centre, Lampoldshausen, Germany

Active methods

- Regenerative cycle
- Technological complexity
- Larger scale engine

Marco Santi

H2O2 based Liquid Rocket Engine

Why Hydrogen Peroxide?

$$H_2O_2 \leftrightarrow H_2O + 1/2O_{2(g)} + 98kJ/mol$$

HTP (High Test Peroxide) Concentration > 80%

Versatility:

- Monopropellant
- $\bullet~$ Bipropellant $\rightarrow~$ combustion reaction with fuel

 $lsp_{MMH/N_2O_4} \simeq lsp_{HTP/Kerosene}$

Project parameters

lsp
$$=rac{c^*c_f}{g_0}$$
 , $T=g_0\dot{m}$ lsp

Kick apogee motor

Oxidizer mass flow	120 [g/s]
Oxidizer	HTP
Fuel	Kerosene
O/F	6.5
MEOP	10 [bar]
Throat diameter	16.8 [mm]
C*	1599 [m/s]
ε	220 - 330
Thrust vacuum	420 - 440 [N]
lsp	310 - 330 [s]
ΔV	1.4688 [km/s]
t _b	1.456 [hours]

Marco Santi

 H_2O_2 based Liquid Rocket Engine

Preliminary design

Marco Santi

Engine design

Main characteristics

- Battleship design
- Multiple configurations
- High safety factor
- 3D printed components

Engine configurations

Short burning time

- Uncooled nozzle
- Fuel injection investigation

Long burning times

- Nozzle cooling
- H_2O coolant

Fuel injector configurations

Commercial injector

- Single injector
- Axial injection
- Full cone spray configuration

Custom configuration

- Multiple injection ports
- Radial injection
- 3D printed plate

Work done

- Preliminary design of the engine
- CFD analysis of the flow structure
- Design the engine
- Implementation of the fuel feeding line

Future work

- Conclusion of the test bed implementation
- Engine production
- Numerical investigation
- First fire test campaign

Thank you! Any questions?