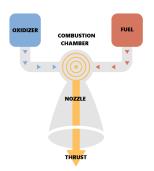
Study and Development of a H_2O_2 based Liquid Rocket Engine

Marco Santi


University of Padova Centro di Ateneo degli Studi e Attività Spaziali "Giuseppe Colombo"

September 13th 2018

Introduction to Liquid Rocket Motors

Main characteristics

- Oxidizer and fuel stored in tanks
- Two controllable feeding lines
- Different cooling system solutions

Advantages

- High specific impulse
- Operation flexibility
 - Multiple shut down and re-ignition
 - Mass flow throttling
 - Mixture ratio control
- Long burning times

Disadvantages

- High manufacturing costs
- Technological complexity

Cooling systems

Passive methods

- Very expensive materials
- Small scale thruster

200N Bipropellant Thruster, Orbital Propulsion Centre, Lampoldshausen, Germany

Active methods

- Regenerative cycle
- Technological complexity
- Larger scale engine

RL10, Aerojet Rocketdyne

Why Hydrogen Peroxide?

$$H_2O_2 \leftrightarrow H_2O + 1/2O_{2(g)} + 98kJ/mol$$

Main characteristics

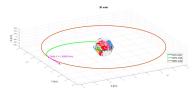
No toxicity

- High volumetric specific impulse
- Easy storable at room temperature

Reduced management, storage and processing costs

HTP (High Test Peroxide) Concentration > 80%

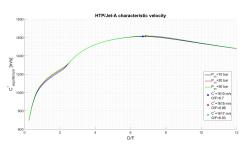
Versatility:

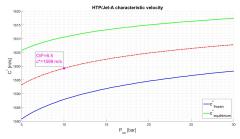

- Monopropellant
- Bipropellant → combustion reaction with fuel

 $Isp_{MMH/N_2O_4} \hookrightarrow Isp_{HTP/Kerosene}$

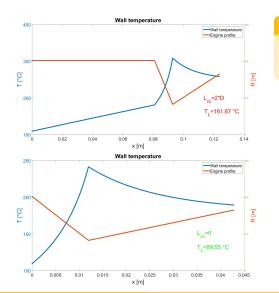
Aim and innovation of this work

- Aim: study and develop a liquid engine based on HTP as a good substitution for the hydrazine based ones
- Innovation: study the coupling of HTP propellant and double vortex flow field

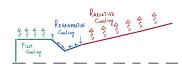

Project parameters

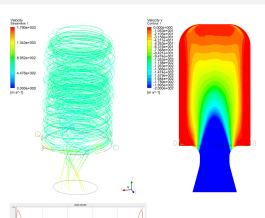


$$\mathit{lsp} = rac{c^*c_f}{g_0}$$
 , $T = g_0 \dot{m} \mathit{lsp}$


Kick apogee motor

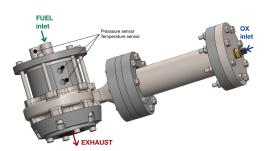
Oxidizer mass flow	[120 [g/s]
Oxidizer	HTP
Fuel	Kerosene
O/F	6.5
MEOP	10 [bar]
Throat diameter	16.8 [mm]
c*	1599 [m/s]
ε	220 - 330
Thrust vacuum	420 - 440 [N]
Isp	310 - 330 [s]
ΔV	1.4688 [km/s]
th	1.456 [hours]

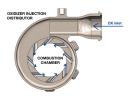

Preliminary design


HTP

- $T_L max = 120^{\circ} C$
- $\dot{m}_{cool} = \dot{m}_{ox}$

Chamber cooling


CFD analysis

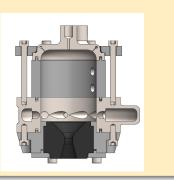

- CFX/Fluent commercial code
- RANS equations
- $k \varepsilon$ turbulent model
- HTP Monopropellant
- Double vortex

└ Note:

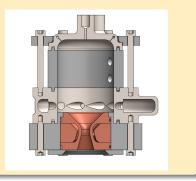
- $CR \ge 30 \Rightarrow$ recirculation on the wall
- Negligible injection angle effect
- No distributor effect

Engine design

Main characteristics

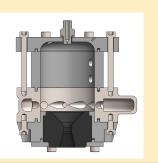

- Battleship design
- Multiple configurations
- High safety factor
- 3D printed components

Engine configurations

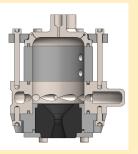

Short burning time

- Uncooled nozzle
- Fuel injection investigation

Long burning times


- Nozzle cooling
- H_2O coolant

Fuel injector configurations


Commercial injector

- Single injector
- Axial injection
- Full cone spray configuration

Custom configuration

- Multiple injection ports
- Radial injection
- 3D printed plate

11 / 14

Work done

- Preliminary design of the engine
- CFD analysis of the flow structure
- Design the engine
- Implementation of the fuel feeding line

Future work

- Conclusion of the test bed implementation
- Engine production
- Numerical investigation
- First fire test campaign

Thank you! Any questions?