Centro Interdipartimentale di Studi e Attività Spaziali «G. Colombo» 33rd cycle PhD Course in Space Sciences, Technologies and Measurements Mechanical Measurements for Engineering and Space

Development of non-contact full field stress-strain measurement techniques applied to lifting machinery's components

Lorenzo Capponi

University of Padova

Supervisor: Prof. Eng. Gianluca Rossi

Lorenzo Capponi (MMIS)

Admission to the 3rd year

- Steps of research
- Theoretical background
- Numerical and experimental analysis
- Tools development
- Industry activities
- Further activities and conclusions

- To get familiar with issues related to lifting machinery Experience in R&D team: machinery, tests and legislations, test procedures, issues
- Depth study and application of standard measurement methods Laboratory experience, tests on the ground
- To develop innovative methods and techniques Algorithms and test benches, tools and software development
- Application to lifting machinery components
- Investigate the thermoelasticity in details spending few months abroad

Theoretical background

Thermoelastic Stress Analysis

$$\Delta T = -\frac{T_o \alpha_l}{\rho c_p} (\Delta \sigma_{ii} + \Delta \sigma_{jj})$$

 $\begin{array}{l} \alpha_l = \text{Thermal expansion coefficient } [\text{m/K}] \\ c_p = \text{Heat capacity at constant pressure } [\text{J/(Kg \cdot K)}] \\ \rho = \text{Density } [\text{Kg/m}^3] \\ T_o = \text{Ambient temperature } [\text{K}] \\ \Delta T = \text{Temperature variation } [\text{K}] \\ (\Delta \sigma_{ii} + \Delta \sigma_{jj}) = \text{Principal components of stress tensor } [\text{Pa}] \end{array}$

TSA measurement chain

Theoretical background

Thermoelastic Stress Analysis

$$\Delta T = -\frac{T_o \alpha_l}{\rho c_p} (\Delta \sigma_{ii} + \Delta \sigma_{jj})$$

Lock-in amplifier scheme

Theoretical background

Damage evaluation: time and frequency domain

Lorenzo Capponi (MMIS)

Admission to the 3rd year

Damage evaluation in frequency domain through thermoelasticity

Geometry of the sample

	-	_	
)			

Modal Analysis

Structural steel			
Density	$7850 \ \mathrm{kg/m^3}$		
Thermal expansion	$1.2 \cdot 10^5 {}^{\circ}\mathrm{C}^{-1}$		
Young modulus	$2~\cdot~10^{11}\mathrm{Pa}$		
Poisson	0.3		
Shear modulus	7.69 · 10^{10} Pa		
Tensile strength	$2.5~\cdot~10^8~{\rm Pa}$		
Compressive strength	$2.5~\cdot~10^8~{\rm Pa}$		

Mode	Frequency [Hz]
1	31.348
2	198.83
3	271.08
4	445.68
5	796.19
6	1486.2

Measurement chain

Damage evaluation in frequency domain through thermoelasticity

Damage evaluation in frequency domain through thermoelasticity

Damage evaluation in frequency domain through thermoelasticity

stress psd cut= app.data; Fmax=app.Freqmax.Value; freq(1,:)=linspace(0,Fmax,size(stress psd cut,3));PSD exp = $\operatorname{zeros}(\operatorname{length}(\operatorname{freq}),\operatorname{size}(\operatorname{stress} \operatorname{psd} \operatorname{cut},1)^*\operatorname{size}(\operatorname{stress} \operatorname{psd} \operatorname{cut},2));$ k=1;for i=1:size(stress psd cut,1)for j=1:size(stress psd cut,2)PSD exp(:,k)=squeeze(stress psd cut(i,j,:));k=k+1;end $[\sim, nc]$ = size(PSD exp); for id=1:nc PSD = PSD exp(:,id);Mom f(1) = trapz(freq, PSD);Mom f(2) = trapz(freq, PSD'.*freq);Mom $f(3) = trapz(freq, PSD'.*freq.^2);$ Mom $f(4) = trapz(freq, PSD'.*freq.^3);$ Mom $f(5) = trapz(freq, PSD'.*freq.^4);$ [Dcum] = dirlik2dam(Mom f,app.a,app.b);D(id,1)=Dcum; end k=1;Imdam=zeros(size(stress psd cut,1),size(stress psd cut,2)); app.Imlife=zeros(size(stress psd cut,1),size(stress psd cut,2)); for i=1:size(stress_psd_cut,1) for j=1:size(stress_psd_cut,2) Imdam(i,j) = D(k);app.Imlife(i,j) = 1/D(k);

MatLab app-designer code

Experimental Pixel (195,280)	Numerical Node 350
$4.1 \cdot 10^{-9} \text{ s}^{-1}$	
$5.4 \cdot 10^{-9} \text{ s}^{-1}$	$4.8 \cdot 10^{-9} \mathrm{s}^{-1}$
$6.9 \cdot 10^{-9} \mathrm{~s}^{-1}$	

Comparison of results

Experimental and numerical damage map [s⁻¹]

Min Value 0.000000e+00

Ymin

Xmin 0

Select Rectangular ROI

width

nr of pixels

ROI

SAVE 'Fatigue of the selected region'

Lorenzo Capponi (MMIS)

Admission to the 3rd year

0.5

15

20 25 30 35 Frequency [Hz]

40 45

12 September 2019

0.2

0.2 0.4

0.6 0.8

1

Raspberry Pi – based device for damage estimation in real-time

Admission to the 3rd year

12 September 2019

Industry activities

• Validation of a mathematical model that allows to predict the dynamic behavior of the engine placed on elastomeric brackets and vibration dampers

• Development of *«gravity lowering system»* which uses gravity force in order to allow the descent of a hybrid telehandler

Lorenzo Capponi (MMIS)

Gravity lowering system z60/fe

Admission to the 3rd year

- ✓ To get familiar with issues related to lifting machinery Experience in R&D team: machinery, tests and legislations, test procedures, issues
- \checkmark Depth study and application of standard measurement methods Laboratory experience, tests on the ground
- $\checkmark~$ To develop innovative methods and techniques Algorithms and test benches, tools and software development

• Research abroad

At the Laboratory for Dynamics of Machines and Structures (LADISK) of the Faculty of Mechanical Engineering of the University of Ljubljana

- Application of developed method to lifting machinery components Application to real cases and components of the method which allow to estimate the damage through thermoelasticity in frequency domain
- Optimization of Raspberry Pi based device Software development and optimization; application to real cases
- Research activities in the industry

Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za dinamiko strojev in konstrukcij

Publications

• Investigating additive manufactured trabecular structures: a multi-instrument approach G. Allevi, L. <u>Capponi</u>, P. Castellini & al. IEEE Transactions on Instrumentation & Measurement (2020) [in review]

• Non-stationarity and non-Gaussianity in Vibration Fatigue J. Slavič, M. Česnik, L. <u>Capponi</u>, M. Palmieri, F. Cianetti, M. Boltežar Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic (2020)

• Stress and strain non-contact measurements on complex structures realized by additive manufacturing L. <u>Capponi</u>; A. Quattrocchi; D. Alizzio; T. Tocci; R. Marsili; R. Montanini; G. Rossi III National forum of Mechanical Measurement (2019)

• Collection of experimental data for multiaxial fatigue criteria verification G. Morettini, C. Braccesi, F. Cianetti, S.M.J. Razavi, K. Solberg, L. <u>Capponi</u> Fatigue & Fracture of Engineering Materials & Structures (2019)

• The relevance of non-stationarities and non-Gaussianities in vibration fatigue M. Česnik, J. Slavič, L. <u>Capponi</u>, M. Palmieri, F. Cianetti, M. Boltežar MATEC Web of Conferences 165, 10011 (2018)

• Non-stationarity index in vibration fatigue: Theoretical and experimental research L. <u>Capponi</u>, M. Česnik, J. Slavič, F. Cianetti, M. Boltežar International Journal of Fatigue 104, 221-230 (2017)

Centro Interdipartimentale di Studi e Attività Spaziali «G. Colombo» 33rd cycle PhD Course in Space Sciences, Technologies and Measurements Mechanical Measurements for Engineering and Space

Thanks for your attention