

Enrico Paccagnella 13 September 2019

Development and Testing of a Small Hybrid Rocket Motor for Space Applications

Università degli Studi di Padova

Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo"

Università degli Studi di Padova

Introduction to HRMs

Ignition charge Seal Nozzle

© Copyright. 2011. University of Waikato. All Rights Reserved.

Liquid rocket motors

Solid rocket motors

Copyright. 2011. University of Waikato. All Rights Reserved.

© Copyright. 2011. University of Waikato. All Rights Reserved.

Hybrid rocket motors

Hybrid motors advantages:

- Safety
- Simplicity
- Reliability
- Low cost
- Start, stop, restart
- Thrust control
- Environmental friendliness

ntages: Hybrid motors issues:

- Low regression rate
- Low combustion efficiency
- Fuel residuals
- Low volumetric loading
- Mixture ratio shift

Possible solutions to main issues:

- Solid fuel additives
- Liquefying solid fuels
- Diaphragms

Nonconventional injector designs

Introduction to HRMs

Development and Testing of a Small Hybrid Rocket Motor for Space Applications

Introduction to HRMs

Development and Testing of a Small Hybrid Rocket Motor for Space Applications

Applications of small HRMs

Sounding rockets

Deorbiting systems

Orbit raising and reentry maneuvering systems

Fyro Starter (4) H2O Tank (4)

Maneuverable adapter rings

Hybrid rocket propulsion group heritage

4 PORTS

Hybrid rocket propulsion group heritage

Mission envelope of HRMs

Suitable hybrid rocket envelope:

Relation between motor size and burning time:

- Parametric with volume loading
- Parametric with regression rate

High regression rate is needed for large motors and high volume loading

Main objectives of the investigation:

- Support the design of the small scale HRM
- Quantify the combustion efficiency varying the injection
- Assess the effect of the post-chamber length
- Determine the wall heat flux to the thermal protections

Several configurations analyzed:

- Different injection intensities
- Different post-chamber lengths
- Different grain internal diameters

Results of the numerical simulations:

- All the configurations achieved high efficiency η > 95 %
- The oxidizer mass fraction is almost zero when the mass flow reaches the end of the post chamber
- A longer post chamber results in higher efficiency
- The wall heat flux increases with the intensity of the injection

Experimental activity

Development and Testing of a Small Hybrid Rocket Motor for Space Applications

Hybrid 1 kN motor:

- Catalytic reactor
- Combustion chamber

Catalytic reactor:

- Decomposes the 90% HTP to oxygen and water
- Gaseous form with a temperature of about 700-800 °C

Combustion chamber:

- Steel cylinder and two flanges (MEOP=40 bar and SF=4)
- Convergent nozzle
- 22 sensor holes (thermocouples and pressure sensors)
- Fuel either HDPE or paraffin

Fluidic line:

- High-pressure nitrogen tank
- Pressure regulation block
- Hydrogen peroxide tank
- Tubes and automated ball valves
- Variable area cavitating venturi

Swirl oxidizer injection

#	SN _g [-]	L _{pc} [mm]	D _p [mm]
1	2	20	25
2	2	50	25
3	2	50	43.5
4	2	50	56
5	2.53	20	25
6	2.53	35	25
7	2.53	50	25
8	2.53	50	46.5
9	2.53	50	61
10	3.33	20	25
11	3.33	35	25
12	3.33	50	25
13	3.33	50	50
14	3.33	50	66.5

Results of the numerical simulations:

- All the configurations achieved high efficiency η > 95 %
- Higher geometric swirl number increase the regression rate of the solid fuel grain
- Shorter post-chambers have a lower influence on the global mixture ratio

Marxman's regression rate law:

- Regression rate of the solid fuel grain $\dot{r} = aG^n$
- Oxidizer mass flux $G = \frac{\dot{m}_{ox}}{A_p}$
- Using the experimental results it is possible to calculate the values of a and n
- The value of n is almost 0.5 meaning that the fuel mass flow rate is approximately constant with the grain port diameter

Relation between SN_a and the coefficient *a*:

- An almost linear relation has been found (at least in the range of SN_a studied)
- The regression rate can be easily varied simply changing the injection plate

Throttleability is achieved by controlling the oxidizer flow

Advantages:

- Trajectory control
- Peculiar mission profiles

Disadvantages:

- Increase system complexity
- O/F shift and c* penalties

Real time throttling

Real time throttling

The study focus on two main objectives:

- Demonstrate the feasibility of a HTP/paraffin hybrid motor with a long burning time
- Demonstrate paraffin liquid layer theory: heat does not penetrate inside the fuel grain during the burn

A HTP/paraffin lab-scale motor has been designed, built and tested at the hybrid propulsion group facility

Test results:

- Successful long burn test
- Constant oxidizer mass flow
- No nozzle throat erosion
- Constant pre-cc and post-cc pressures
- Small pressure oscillations
- Regression rate exponent n=0.5
- Regression rate exponent a=0.145

Temperature sensors:

- In wax 1-2: constant temperature until a steep increase around second 55 (thermocouples 10 mm inside the grain)
- Out steel 1-2: negligible temperature variation
- Out steel nozzle: continuous increment of the temperature (no insulation around the graphite and molybdenum parts)

A small scale hybrid rocket motor was developed and extensively tested

Analytical model:

- The operating range for single port hybrids was found
- High regressing fuels are better suited for larger thrustsshorter burning times, while the opposite occurs for low regressing fuels

Numerical investigation:

- Support the design process
- All the configurations achieved high efficiency
- A longer post chamber gives just slightly higher efficiency
- A too high injection swirl intensity causes unacceptable heat fluxes to the thermal protections

Experimental activity:

- Swirl oxidizer injection
- Real time throttling
- Long burning time

Swirl oxidizer injection:

- All the configurations achieved high efficiency, thus shorter post chambers are preferable because they have a lower influence on the global mixture ratio
- An almost linear relation between SN_g and a has been found, thus the regression rate can be easily changed during the design phase depending on the mission requirements

Real time throttling:

Dynamic throttling with a maximum throttling ratio of 12.6:1

Long burning time:

- The motor burned for 80 s in fuel-rich conditions
- The pressure profile was stable and flat showing no sign of grain failure/degradation
- The flat pressure profile without nozzle erosion also suggests a regression rate exponent near 0.5
- Two thermocouples were inserted in the fuel grain that demonstrated the validity of the liquid layer theory

Thank you for your attention!

Any questions?

Development and Testing of a Small Hybrid Rocket Motor for Space Applications