Development of measurement techniques for aerospace components inspection

PhD Student Gloria Allevi

Curriculum Mechanical Measurement for Engineering and Space

EventRequest of admission to the second year of
the PhD Course

Shearography Inspection

- Quantitative defect size and morphology characterization in aerospace composites
- Improving the accuracy on the defect size estimation using wavelet transform

«Quantitative Defect Size Estimation in Shearography Inspection by Wavelet Transform and Shear Correction»

G.M. Revel, G. Pandarese, G. Allevi

Work discussed during the International Conference «Metrology for Aerospace»

Padua, 21-23 June 2017

UNIVERSITÀ Politecnica delle marche

- Interferometric, full-field technique
- Short time inspection large area
- Transportable on field application
- No need of reference beam
- Output fist derivate along a specific direction (shear) of the out of plane – displacement of the observed surface

Optical effect of coherent light interacting with rough surface

Proposed algorithm

1. Localized shear computation

Proposed algorithm

2. Wavelet Transform Scanning on the unwrapped phase map

• Extracting the significant singularity of

• Extracting the significant singularity of the wavelet representative of the edge of the profile (Mexican Hat Wavelet)

Algorithm validation on a calibrated specimen

PVC specimen with known defects: focus on the 24 +/- 0.05 *mm* diameter and 1 +/- 0.05 *mm* depth defect.

		y-direction	x-direction		
ROI mean shear values	[pixels]	38.7	1.0	These values will be subtacted to the coordinates of	
ROI mean shear values	[mm]	3.09	0.08	each delected boundary	
			→ Our o	laorithm gives an overestimation of	
			0.3 mm	on the diameter and 11.60 mm² on	
			the are	ea compared to standard image	
			processi	na that aives an underestimation of	
			1 0 mm	on the diameter and $55 5 \mathbf{m}^2$ on	
Evaluated diame	eter : 24.3	0 ± 0.05 mm	1.0 /////		
Evaluated Area :	463.80 ±	2.02 mm^2	the area	1	

Application on an aerospace component

The processed image was sturned relaxation successive to a 5 s thermal load, at a distance of 35 cm from the surface

Entropy based-threshold vs Contrast to Noise Ratio (CNR)

Thermography Inspection

- Feasibility study of Thermoelastic technique on a 3D printed- titanium alloy bracket
- Stress analysis (TSA)
- Displacement field analysis (Optical Flow)

Amplitude (stress distribution)

Phase (stress sign \rightarrow compression/traction)

•	Load	8 Kg
•	Load frequency	30 Hz
•	Sampling frequency	150 Hz
•	Acquisition time	60 s

Optical Flow Analysis

• The hypothesis of brightness constancy is not valid!!!

displacement at the load frequency

Future work

Shearography

- Algorithm improvement
- Making results independent on test conditions (load, shear, distance from the surface...)
- Comparison with ultrasound tests results

Thermography

- Optical flow code validation
- Application on thermal deformations measurements (comparison with Digital Image Correlation)
- Application on thermal vacuum chamber-tests
- Thermoelastic/displacement modal analysis on aerospace structures

Thanks for your attention

PhD Student Gloria Allevi

Curriculum Mechanical Measurement for Engineering and Space

Event Request of admission to the second year of the PhD Course

