Quantum Optics Experiments in Space

Presentation of the proposed research program

Francesco Vedovato

Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo" CISAS

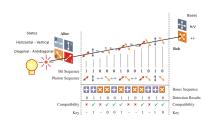
23rd October 2015

Quantum Optics Experiments in Space

Research Project Goal

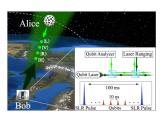
Study the feasibility of different experiments involving **Quantum Optics in Space** with multiple purposes and applications

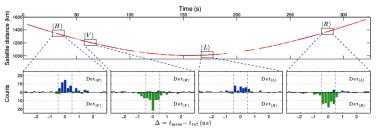
Fundamental tests combining
Quantum Mechanics
and General Relativity


Secure communications on planetary scale

Quantum Key Distribution

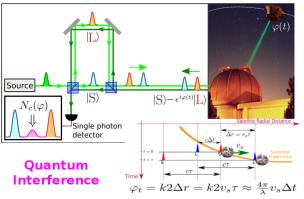
QKD: a Quantum Communication protocol


It allows establishing a secure communication between two parties by exchancing quantum states

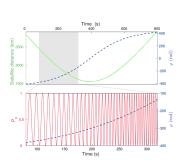

- Already realized in commercial products
- Fiber based QKD is limited within few hundreds of kilometers
- Free space optical links are more suitable for long-distance QKD
- Global network for QKD requires space channels

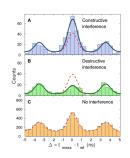
Space Quantum Communications: state of the art

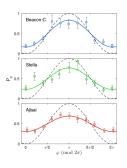
- Single-photon exchange exploiting LEO satellites: $\mu_{sat} \approx 1$
- First satellite quantum communication using polarization encoding
- ASI and private aerospace companies interested in developing this technology also with dedicated payloads



G. Vallone, PRL 115 (2015)


Quantum interference along Space channels

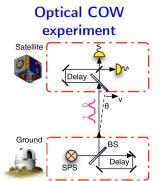

- Quantum information encapsulated in the photon phase
- More difficult to be implemented in free space long links
- Atmospheric turbulence is not detrimental for time-bin technique



Experimental results

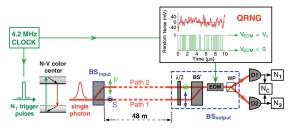
- Trajectory recontruction and phase estimation
- Returns histogram with phase selection
- Interference with three different satellites and visibility up to 67%

Research project: framework and objectives


Framework

Characterization of the Earth-satellite quantum channel and its exploitation to realize quantum communications and quantum experiments in Space

Objectives


- Designing and testing a new interferometry setup to achieve a greater value of the interference visibility
- Studying the combined use of photon degrees of freedom given by polarization and phase to enlarge the transmissivity of the quantum channel
- Observing interference with high visibility is the starting point to realize Quantum Optics experiments in Space

For example...

Rideout et al., arXiv:1206.4949 (2012)

Satellite based delayed-choice experiment

Jacques et al., Science, 315 5814 966-968 (2007)

Gantt Chart

Level	Activity description and events	I year	II year	III year
Event	Presentation for approval of research	<u> </u>		
WP100	Design and test of the interferometry setup			
WP200	Study of combined use of photon polarization and phase			
Event	Admission to II year	7	<u>}</u>	
WP300	Research activity abroad			
Event	Admission to III year		7	
WP400	Quantum experiments in Space: feasibility studies			
Event	Admission to final examination		_	*
WP500	Writing thesis and reports		_	
WP500	Writing thesis and reports		-	