Study and Development of Throttleable Hybrid Rocket Motors

Alessandro Ruffin

University of Padova Centro di Ateneo degli Studi e Attività Spaziali "Giuseppe Colombo"

September 22nd 2017

Alessandro Ruffin

Throttleable Hybrid Rocket Motors

- 3

Throttleable Hybrid Rocket Motors

Nammo test, Spartan Project

Applications

- Launchers
- ADV
- Flying test beds

For a fixed nozzle throat, throttleability is achieved by controlling the oxidizer flow \Rightarrow Flow control valve (FCV)

Advantages

- Increase trajectory efficency
- Peculiar mission profiles requiring deep throttling
- Requires to control a single feeding line

Disadvantages

- Increase system complexity
- o/f shifting

2/14

(日) (同) (日) (日)

C^* Penalties

- Circular port
- Port fuel consumption
- Marxman power law

$$o/f = \frac{\dot{m}_{ox}^{1-n} \ D_{port}^{2n-1}}{4^n \ \pi^{1-n} \ a \ \rho_f \ L}$$

 $n = 0.5 \Rightarrow no D_{port}$ sensitivity $n = 1 \Rightarrow no \dot{m}_{ox}$ sensitivity $n \in [0.45 \ 0.8]$

	90% <i>HTP</i>	N ₂ O	LOX
Maximum c* [m/s]	1598	1559	1773
c* Sensitivity [m/s]	-22.4	-16.3	-369.9
c* Penalty TR=5 (balanced)	95.3%	95.9%	96.2%
c* Penalty TR=5 (fuel rich)	88.0%	84.5%	82.7%
c* Penalty TR=10 (balanced)	91.6%	92.8%	93.2%
c* Penalty TR=10 (fuel rich)	78.3%	78.5%	75.4%

Arbitrary throttling \Rightarrow o/f shift \Rightarrow Performance reduction

Throttleable Hybrid Rocket Motors

FCV selection

Techniques:

- Pure dissipative valve
- Variable area injection
- Parallel feeding lines
- Variable area cavitating venturi

For a CV:

$$\dot{m}_{ox} = C_d A_{th} \sqrt{2 \rho_{ox} (p^\circ - p_{sat})}$$

Peculiarities

- $\bullet \ \text{variable area} \Rightarrow \text{flow control}$
- if $p_{up}^{\circ} > [0.8 \ 0.9] \ p_{down}^{\circ} \Rightarrow tank$ combustion chamber uncoupling

Throttleable Hybrid Rocket Motors

- Flow control valve design concluded
- Integration and testing
- Flow control valve characterization
- Static hybrid rocket motor fire tests

E 990

・ 同 ト ・ ヨ ト ・ ヨ ト

FCV: Design

FCV: Design

Minimum mass flow range	30 [g/s]
Maximum mass flow range	300 [g/s]
Maximum operating pressure	80 [<i>bar</i>]
Venturi throat diameter	2.2 [<i>mm</i>]
Upstream throat radius	3.3 [<i>mm</i>]
Venturi divergence angle	10 [<i>deg</i>]
Pintle apex angle	10 [<i>deg</i>]
Maximum pintle stroke	11 [<i>mm</i>]
Useful pintle stroke	7 [<i>mm</i>]

Features

- Conical pintle/spike
- Manually moved pintle
- Pressure tap for feedback

FCV characterization: Set-up

Features

- HTP tank (piston separator)
- Flow control valve
- Catalytic bed (not shown)
- Test motor (not shown)
- Purging line

FCV characterization: Results

 H_2O

Throttleable Hybrid Rocket Motors

September 22nd 2017 9 / 14

3

FCV characterization: Results

 $C_{D,H_{2}0} = 1.008 - 2.626 \ x - 93.14 \ x^2 - 4.643 \cdot 10^{-5}/x, \ R^2 = 0.93$ $C_{D,HTP} = 1.003 - 0.7345 \ x - 174.5 \ x^2 - 3.086 \cdot 10^{-5}/x, \ R^2 = 0.86$

Alessandro Ruffin

Throttleable Hybrid Rocket Motors

September 22nd 2017

Test Motor: Fire test campaign

A test campaign was conducted to characterize the test motor behavior with different mass flows. Tests were conducted in the fuel rich region.

3

Test Motor: Fire test campaign

A test campaign was conducted to characterize the test motor behavior with different mass flows. Tests were conducted in the fuel rich region.

Conclusion and Future work

- A variable area cavitating venturi to be used as flow control valve in hybrid rocket motors was developed and characterized
- Our test motor was tested with four different oxidizer mass flows reaching a 1:5 throttling ratio
- Automatically control the pintle stroke implementing a DC motor
- Characterize the dynamic behavior of flow control valve and test motor
- Throttling tests

Conclusion

Thank you! Any question?

Throttleable Hybrid Rocket Motors

September 22nd 2017