Study and Development of Throttleable Hybrid Rocket Motors

Alessandro Ruffin

Università degli Studi di Padova

Centro di Ateneo degli Studi e Attività Spaziali "Giuseppe Colombo"

23 October 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction to Hybrid Rocket Motors

Main characteristics

- Oxidizer in the tank, Fuel in the combustion chamber
- One controllable feeding line
- Different technological solutions and propellant formulations

イロト イポト イヨト イヨト

Advantages of Hybrid Rocket Motors

Reactants Separation

- Safety during the handling and manufacturing \Rightarrow Low operative cost
- Oxidizer flow control
 - \Rightarrow Mission abort and throttlability
- Simpler than liquid engines
 - \Rightarrow Low manufacturing cost

Non-hazardous propellant formulation

- Reduced pollution and toxicity (Green propellants)
- Safety during development
 - \Rightarrow Low development cost

イロト イヨト イヨト イ

Disadvantages of Hybrid Rocket Motors

Reactant separation \Rightarrow Diffusive flame mechanism

Disadvantages

- Low regression rates \Rightarrow Volumetric efficiency
- Combustion efficiency
- O/F shift
 - $\Rightarrow \mathsf{Lower \ specific \ impulse}$
- unburned fuel sliver

 \Rightarrow Inert mass fraction

イロト イヨト イヨト

Applications of Hybrid Rocket Motors

Safety, Low overall cost \Rightarrow Peculiar applications

Private Spaceflight

Most of them require throttling

Sac

Throttling

Methods derived from the liquid propulsion technology

Variable injection area

- Complex, Expensive: precise relative motion
- Excludes catalytic injection

- Pressure drop in the feeding line: additional efficiency loss
- Simple

Design heritage

Alessandro Ruffin (CISAS)

Test capabilities

Test bed

- H_2O_2 concentration
- Up to 7kN of Thrust

DQC

イロト イヨト イヨト イヨト

Activity organization

Level	Activity (Work Package)	hours	year I				year II				year III			
1 0 0	State of the art analysis	270	230	40	i	i								
1 1 0	Bibliographical research	70	70											
1 2 0	Numerical methods of design	100	80	20										
1 3 0	Experimental methods of analysis	100	80	20										
2 0 0	Numerical Analysis	990	30	220	260	240	170	70						
2 1 0	Definition of the driving parameters	80		80										
2 . 2 . 0	Design of the throttling systems	200	20	80	80	20								
2,3,0	Design of the engine	150	10	20	80	40								
2 4 0	Throttling Numerical Analysis	310		40	100	90	80							
2 5 0	Engine Numerical Analysis	250				90	90 -	70 -						
3 0 0	Experimental Analysis	1680			i	20	150	230	290	270	240	240	160	80
3 1 0	Experimental set-up arrangement	410				20	130	30	30	140	30	30		
3 2 0	Test campaign (Throttling device)	410					20	180	180	30				
3 3 0	Test campaign (Whole engine)	340								20	130	130	60	
3 4 0	Data analysis and validation	520						20	80	80	80	80	100	80
4 0 0	Exploitation	120		1	1	1							20	100
4 1 0	Cost-effective solutions	60				1							20	40
4 2 0	Deep-throttling main ascent/descent engines	30												30
4 3 0	Sounding rockets and small boosters	30												30
5 0 0	Compilation of Thesis and Reports	690		1	1	1	20	50	50	70	100	100	150	150

Thank you for your time

Alessandro Ruffin (CISAS)

23 October 2015 10 / 10