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HPT Concept

Main components

e Propellant
tank and
fluidic line

@ Dielectric
tube

@ RF antenna,
provide power
e Coils or

permanent
magnets
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Magnetic field

@ Create a Propellant B, magnetic
magnetic tank l Magnets Antenna field lines

or Coils :
Introduction
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outlet
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@ Enhanced

plasma Fluidic Dielectric RF Power  Magnetic
confinement line tube nozzle
region
o Efficient
power

deposition
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HPT Concept

Thruster stages

o Production

stage,
Helicon
source inside
which plasma
is generated

o Acceleration
stage,
magnetic
nozzle region
where plasma

is accelerated
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HPT Performances
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@ Simple geometry = Introduction
low cost

@ No needs of grids and
electrodes = long life

@ Design robust to
scaling and multiple
gases operation
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HPT Performances
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Introduction

Issues

@ Never tested in space
missions = only
theoretic reliability

@ Performances lower
than lon and Hall
thrusters, /s, < 1500 s

v
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@ Grasp the main physical phenomena which govern the
behaviour of both the Production Stage and Acceleration
Stage

e Ultimately, improve the performances of HPTs
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Objectives

Objectives

@ Grasp the main physical phenomena which govern the
behaviour of both the Production Stage and Acceleration
Stage

@ Ultimately, improve the performances of HPTs

Methodology

@ Develop a numerical tool able to predict the propulsive
performances of a HPT

@ Employ a thrust stand to obtain reliable measurements of
the actual thrust produced by HPT prototypes

Helicon
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Introduction
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Production Stage
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o Self-consistent model of Helicon plasma source
e EM module = wave-plasma coupling
@ FLUID module = macroscopic plasma transport

Initialization

' EM module ‘

Numerical
Approach

Plasma Density, Electron Power
Temperature & Neutral Deposition
Density Distributions Distribution

t FLUID module J
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Production Stage
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@ Relies on the well established code ADAMANT

Mirk
@ Generic shape of RF antenna can be handled

@ The antenna current is computed and not assumed

Initialization

' EM module ‘

Numerical
Approach

Plasma Density, Electron Power
Temperature & Neutral Deposition
Density Distributions Distribution

‘ FLUID module ’
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Production Stage

FLUID module Plasma
@ Implemented in the OpenFOAM C++ library Thster
e Easily reconfigurable from 1D to 3D

e Computational cost at bay because of the fluid approach

Initialization

' EM module ‘

Numerical
Approach

Plasma Density, Electron Power
Temperature & Neutral Deposition
Density Distributions Distribution

‘ FLUID module ’
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Production Stage - Validation

Helicon
Plasma
Thrusters

upper antenna coil

“/Ele ctromagnets

Mirl

quartz jar —sm/ A
|
|
|

I
|
|

o Plasma reactor for material

Numerical
Approach

I lower antenna coil

processing \ ) :
o System simulated with the El
self-consistent code SEMS o S:I
@ 2D-axisymmetric - -~ 'r|

simulation
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Production Stage - Validation

Helicon

Benchmark Plasma

Thrusters

@ Plasma reactor for material
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5 0 \ o | —
simulation
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Error sources 17em I
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o Different numerical '
approaches I

@ SEMS chemical reactions
and boundary conditions
unknown
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Production Stage - Validation
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Numerical
Approach

Electron density n,
@ Similar trend predicted
o Difference of 50% between the predicted peak values

@ Good agreement between the two codes
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Production Stage - Validation

Helicon

Plasma
—==EM module Thrusters
—SEMS

Numerical

05 Approach

Power deposition Eyon

@ Good qualitative and quantitative agreement

@ The agreement between the two solvers is very good
despite the two different solution methods adopted
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Coupling of Production and Acceleration Stages

Helicon
Plasma

i Thrust
Numerical model of HPT

@ The source stage is solved with 3D-VIRTUS

@ The momentum flux of the plasma ejected from the outlet
of the source is computed

Numerical
Approach

@ An analytical quasi-one dimensional model of the plume is
applied to calculate the thrust and the specific impulse

Source Stage Plasa Density, Electron Acceleration
TOOl - Temperature & Neutral - T |
Density at Source Outlet Stage oo
3D-VIRTUS Plume model
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Coupling of Production and Acceleration Stages

Numerical model of HPT D

@ The source stage is solved with 3D-VIRTUS Thrusters

@ The momentum flux of the plasma ejected from the outlet
of the source is computed

Numerical

@ An analytical quasi-one dimensional model of the plume is s
pproac

applied to calculate the thrust and the specific impulse

Source Stage Plasma Density, Electron Acceleration
TOOI - Temperature & Neutral ‘ Sta e T00|
Density at Source Outlet g
3D-VIRTUS Plume model

@ Accurate description of the plasma source

@ Preliminary estimations of propulsive performances
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Numerical Results - 3D-VIRTUS

Helicon
Single Loop Nagoya Type-lll Plasma
Antenna plasma Antenna Thrusters

plasma

il

Numerical
Results

@ Performed a parametric analysis to identify how the
configuration of the source influences the plasma
parameters

@ Here the influence of the antenna geometry is analysed
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Numerical Results - 3D-VIRTUS
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Numerical
Results

-0.05 0 0.05 -0.05 0 0.05

Electron density n. results
@ The ne peak is higher if the discharge is driven by a Nagoya
Type-1ll Antenna, rather than a Single Loop Antenna

@ In the Single Loop Antenna case the peak is not in
correspondence of the axis of the discharge
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Numerical Results - HPT model

Helicon
Plasma
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The same configurations analysed with 3D-VIRTUS have been
simulated with the numerical model of HPT to evaluate the Results
attainable thrust T

Numerical
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Numerical Results - HPT model

Helicon
Plasma
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The same configurations analysed with 3D-VIRTUS have been
simulated with the numerical model of HPT to evaluate the
attainable thrust T

Results

Numerical
Results

‘ Single Loop  Nagoya Type-lll

T [mN] 1.73 2.21

e T is significantly higher if the discharge is driven by
Nagoya Type-1il Antenna

@ The Nagoya Type-lll Antenna is also the case of higher ne

v
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Counterbalanced Pendulum Thrust Stand

Helicon

Main features Plasma

Thrusters

@ Developed to test small-medium HPTs (up to 10 kg)
@ Thrust measured in the range from uN up to tens of mN
o Tens of measurements per day can be accomplished

@ Uncertainty in the range of 10%

Counterweights Electrical Calibration

System a
u Experimental
Threaded . Measure-
ments
Bar
Eddy Current
Brake
Pendulum
Arm

Load Plate Frame  Flexural Pivots

Mirko Magarotto (CISAS) con Plasma Thrusters 14 September 2018



Counterbalanced Pendulum Concept

Helicon
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Thrusters

Corner Cube

Mirror \

Reflector
Plexiglas —
flange Sensor
Beam E;. .............................. :
splitter
I Laser head
Experimental

Measure-
ments

Counterbalanced pendulum concept

@ The thrust T produces an horizontal displacement A, of
the pendulum arm A, o< T

@ The displacement is measured with a laser
interferometer focused on a corner cube
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Zero-Position Drift Correction & Thrust Evaluation

Helicon
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Zero-position drift

Due to thermal 30

o o — Plasma O Cold Gas O
gradients which make E e
3 25
the centre of mass of the P
pendulum move 5 208
£
@ Plasma heat losses g 15
- o o Experimental
major drift source a 5 Measure-
) ﬁ ments
@ Electrical cables and

(@)

gas adduction tube 0 50 100 150 200
. Time [s]

are other important

drift sources
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Zero-Position Drift Correction & Thrust Evaluation

Original
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@ Drift contribution approximated with interpolation lines

@ Thrust evaluated from A, difference between corrected

mean values
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Uncertainty Evaluation & Benchmark
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K Y N T LR R

Thrust [mN] 0.278 0.426 0.380 0.252 0.405
Uncertainty [mN] +0.020 +0.023 +0.047 +0.024 +0.054

Thrust measurement

Experimental
Measure-
ments

Uncertainty of the measurements in the order of 10%
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Uncertainty Evaluation & Benchmark

Helicon

N N E O D G s
Thrust [mN] 0.278 0.426 0.380 0.252 0.405 Thrusters
Uncertainty [mN] +0.020 +0.023 +0.047 +0.024 +0.054

Thrust measurement

Uncertainty of the measurements in the order of 10%

rest 1 ]2 3]s |

T electrical [mN] 0.203 0.254 0.147 0.180 Experimental
T stand [mN] 0.178 0.208 0.172 0.192 Measure:
Relative Difference [%] -12.4 -18.2 16.6 6.8

Thrust stand VS Faraday probe measurements

Agreement within the 20%, in line with the uncertainty of the
electrical measurements in the order of 30-40%
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Conclusions and Future Work
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Conclusions

@ The model of HPT predicts accurately the Production
Stage and preliminary the propulsive performances

e Both 3D-VIRTUS and the model of HPT have been
exploited to analyse a wide range of source configurations

@ A counterbalanced pendulum thrust stand for HPTs
testing has been characterized and exploited

Conclusions
and Future
Work

e Qualitative agreement of numerical and experimental data

v
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Conclusions and Future Work

Conclusions

@ The model of HPT predicts accurately the Production
Stage and preliminary the propulsive performances

@ Both 3D-VIRTUS and the model of HPT have been
exploited to analyse a wide range of source configurations

@ A counterbalanced pendulum thrust stand for HPTs
testing has been characterized and exploited

e Qualitative agreement of numerical and experimental data

@ To simulate the Acceleration Stage with a more accurate
tool; e.g., the PIC code F3MPIC

@ To optimize the tested HPT with the updated code that
gives accurate predictions of the propulsive performances
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