

Numerical and Experimental Investigation into the Performance of Plasma Sources for Space Propulsion Systems

Mirko Magarotto

Centro di Ateneo di Studi e Attività Spaziali Giuseppe Colombo CISAS University of Padova Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

1 / 17

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Framework & Statement of the Problem

2 Numerical Approach

- 3 Experimental Approach
- 4 Future Expected Results

Mirko Magarotto (CISAS)

→ < ∃ →</p>

Electric Space Propulsion

Definition

- Electric power employed to generate thrust
- Usually plasma is operation fluid

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

22 September 2017 3 / 17

Electric Space Propulsion

Definition

- Electric power employed to generate thrust
- Usually plasma is operation fluid

Main Features

- High specific impulse: higher > 1000 s
- Low thrust: lower < 1 N

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

3 / 17

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017

Electric Space Propulsion

Main Features

- High specific impulse: higher > 1000 s
- Low thrust: lower < 1 N

Some applications

- Attitude control
- Cubesats
- Interplanetary missions

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017 3 / 17

Electric Space Propulsion - State of the art

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

4 / 17

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

22 September 2017

Helicon Plasma Sources

Helicon Plasma Sources

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017 5

Model of the Source

Model of the Source

Model of the Source

COMSOL - OpenFOAM Comparison

COMSOL

- Commercial software
- Limited possibility of modifying the model's equations
- Problems with energy equation and boundary conditions

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017

- 🖌 🖻

COMSOL - OpenFOAM Comparison

COMSOL

- Commercial software
- Limited possibility of modifying the model's equations
- Problems with energy equation and boundary conditions

OpenFOAM

- Open source C++ library
- Total access to the source code, and to model's equations
- Energy equation and boundary conditions written by user

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017 7 / 17

Implementation Strategy

 Implementation in OpenFOAM of the same fluid model of COMSOL, in order to have a consolidated benchmark Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

∃> < ∃>

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Implementation Strategy

- Implementation in OpenFOAM of the same fluid model of COMSOL, in order to have a consolidated benchmark
- Coupling of OpenFOAM and ADAMANT, and benchmark against COMSOL+ADAMANT

A B A A B A

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Implementation Strategy

- Implementation in OpenFOAM of the same fluid model of COMSOL, in order to have a consolidated benchmark
- Coupling of OpenFOAM and ADAMANT, and benchmark against COMSOL+ADAMANT
- Update of OpenFOAM with more refined fluid model (e.g. modified energy equation)

A B F A B F

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

8 / 17

Future Expected Results

Implementation Strategy

- Implementation in OpenFOAM of the same fluid model of COMSOL, in order to have a consolidated benchmark
- Coupling of OpenFOAM and ADAMANT, and benchmark against COMSOL+ADAMANT
- Update of OpenFOAM with more refined fluid model (e.g. modified energy equation)
- Experimental validation

A B F A B F

OpenFOAM - COMSOL 1D Simulation Results

1D Simulation

- Evaluated plasma parameters gradients only along axis of cylindrical plasma source
- Assumed power deposition profile
- Comparison between the two solvers very good

Mirko Magarotto (CISAS)

OpenFOAM - COMSOL 3D Simulation Results

3D Simulation

- 3D data sampled on a semi-plane which contains the axis of the plasma source, and on a line into this plane
- Assumed power deposition profile
- Comparison between the two solvers very good

Mirko Magarotto (CISAS)

Helicon Plasma Sources

Thruster Diagnostic System

Faraday probe, Retarding Potential Analyzer and Thrust Balance to measure Specific Impulse and Thrust

→ ∃ →

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017

Thrust Stand Concept

Counterbalanced Pendulum Concept

 In accordance with the rotational equilibrium equation a thrust T produces an angular displacement:

 $\alpha = Tb_t/(K + g(m_t b_t - m_c b_c))$

 Measured, with a laser interferometer, the displacement of a corner cube fastened to the pendulum arm Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Thrust Stand Results

Position Drift

Due to thermal gradients which make the pendulum mass center move

- Plasma heat losses major drift source
- Electrical cables and gas adduction tube are other important drift sources

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Thrust Stand Results

Drift Correction Procedure & Thrust Evaluation

- Identification of intervals where heating conditions uniform
- Drift contribution approximated with best fit lines
- Thrust evaluated from Δ_{eq} , corrected mean values difference

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017

 Test
 1
 2
 3
 4
 5

 Thrust [mN]
 0.278
 0.426
 0.380
 0.252
 0.405

 Uncertainty [mN]
 ±0.020
 ±0.023
 ±0.047
 ±0.024
 ±0.054

Thrust Measurement

Non optimized 50 W Helicon Plasma Thruster, uncertainty in the order of 10%

Helicon Plasma Sources

Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

∃> < ∃>

Thrust Stand Results

Test	1	2	3	4	5
Thrust [mN]	0.278	0.426	0.380	0.252	0.405
Uncertainty [mN]	±0.020	±0.023	±0.047	±0.024	±0.054

Thrust Measurement

Non optimized 50 W Helicon Plasma Thruster, uncertainty in the order of 10%

Test	1	2	3	4
T electrical [mN]	0.203	0.254	0.147	0.180
T stand [mN]	0.178	0.208	0.172	0.192
Relative Difference [%]	-12.4	-18.2	16.6	6.8

Stand VS Electrical Measurements

Agreement within the 20%, in line with the Electrical measurements uncertainty in the order of 30-40%

Mirko Magarotto (CISAS)

Helicon Plasma Sources

22 September 2017

15 / 17

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Future Expected Results

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Future Expected Results

Full development of the numerical tool devoted to the source analysis

∃> < ∃>

Future Expected Results

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Future Expected Results

- Full development of the numerical tool devoted to the source analysis
- Oesign, optimization, and testing of an high-power Helicon plasma source

A B A A B A

Future Expected Results

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Future Expected Results

- Full development of the numerical tool devoted to the source analysis
- Design, optimization, and testing of an high-power Helicon plasma source
- Ichnology exploitation

4 3 5 4 3

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Numerical Approach

Experimental Approach

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

(日) (周) (日) (日)

22 September 2017