

Numerical and experimental investigation into the performance of plasma sources for space propulsion systems

Mirko Magarotto

Centro di Ateneo di Studi e Attivita' Spaziali Giuseppe Colombo CISAS University of Padova Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

1 / 16

Results

Future Expected Results Outline

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

2 / 16

Framework & Statement of the Problem

2 Methodology

Mirko Magarotto (CISAS)

э

4 ∃ > < ∃ >

Electric Propulsion

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

3 / 16

Main Features

- High specific impulse
- Low thrust
- High thrust efficiency

A B F A B F

Electric Propulsion

Main Features

- High specific impulse
- Low thrust
- High thrust efficiency

Some applications

- Attitude control
- Interplanetary missions

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

3 / 16

Mirko Magarotto (CISAS)

Helicon Plasma Sources

16 September 2016

Electric Propulsion - State of the art

Mirko Magarotto (CISAS)

Helicon Plasma Sources

16 September 2016

Helicon Plasma Thrusters

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Helicon Plasma Thrusters

Helicon Main components Plasma Sources cold gas tank Gas tube **RF** antenna Magnetic • plasma source coil Ar/Na Nozzle coil Framework cooling magnetic reservoir & Statement of the nozzle Problem Advantages Iong life (no Ar/Na electrodes or Nozzle injector and Hydrazine Magnetic source rear mixing grids) coil wall chamber Iow cost (simple geometry) ・ロト ・ 同ト ・ ヨト ・ ヨト

Mirko Magarotto (CISAS)

Helicon Plasma Sources

16 September 2016

Helicon plasma sources

Helicon plasma sources

Main components

- dielectric cylinder
- RF antenna
- magnetic coils

Main features

- high density plasma $n \ge 10^{18} {
 m m}^{-3}$
- simple antenna geometry
- low magnetic field $B_0 \leq 1000 \text{ G}$

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Results

Attained Results

 Developement of a new fluid solver for plasma transport with the aid of COMSOL

$$\frac{\partial}{\partial t}n_e + \nabla \cdot \Gamma_e = R_e$$

$$\mathsf{T}_e = -(\mu_e \cdot \mathsf{E})n_e - \mathsf{D}_e \cdot \nabla n_e$$

- Coupling the new tool with ADAMANT
- Numerical validation of the new tool

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

A B F A B F

Results

• Developement of a new fluid solver for plasma transport with the aid of COMSOL

$$\frac{\partial}{\partial t}n_e + \nabla \cdot \Gamma_e = R_e$$

$$\Gamma_e = -(\mu_e \cdot \mathbf{E})n_e - \mathbf{D}_e \cdot
abla n_e$$

- Coupling the new tool with ADAMANT
- Numerical validation of the new tool

Work in Progress

Experimental validation of the new tool

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

< 47 ►

A B F A B F

Numerical Results - Analyzed Cases

Numerical Results - 1D radial

CISOS

Main features

- Plasma density *n* peak near the axis of the source
- Radial power deposition Pwr peak in the outer edge

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Numerical Results - 1D axial

CISOS G.COLOMBO

Main features

- Plasma density *n* peak in the center of the discharge
- Axial power deposition Pw_z below the antenna

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Numerical Results - 2D radial-axial

Main features

- Plasma density *n* peak in the core of the discharge
- Radial-axial power deposition Pwrz below the antenna

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Experimental Setup for Validation and Testing

Plasma Diagnostic System

Fiber-optic spectrometer, Langmuir probe and MW interferometer to characterize the plasma

Helicon Plasma Sources

COLOM

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

16 September 2016

Experimental Setup for Validation and Testing

Thruster Diagnostic System

Faraday probe, Retarding Potential Analyzer and Thrust Balnce to measure Specific Impulse and Thrust

Helicon Plasma Sources

COLOM

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

16 September 2016

Future Expected Results

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

/lethodology

Results

Future Expected Results

Future Expected Results

- Validation of the new tool
- Oesign, development, and testing of an high-power Helicon plasma source
- Ichnology exploitation

크 : : : 크

Helicon Plasma Sources

Mirko Magarotto

Framework & Statement of the Problem

Methodology

Results

Future Expected Results

Mirko Magarotto (CISAS)

Helicon Plasma Sources

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

16 September 2016