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 Conclusions



 The classical continuum theory of solid mechanics basically employs partial

derivatives in the equation of motion and accordingly requires the differentiability of

the displacement field. Such an assumption breaks down when simulation of

problems containing discontinuities, such as cracks, comes into the picture.

Discontinuous problems
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Fundamentals of peridynamics
• The equation of motion is defined by means of an integral operator as:
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• The PairWise force function is defined, for a linear elastic material, by means of the
following expression (on plane behavior):

E →  Young’s modulus
G0 → Fracture energy in mode I

𝒇 𝜼, 𝝃 = 𝑐 ∙ 𝑠
𝝃 + 𝜼

𝝃 + 𝜼

𝑠 =
𝝃 + 𝜼 − 𝝃

𝝃

𝑐 ∝
𝐸

𝛿3
→   bond stiffness 

→   bond stretch 

𝑠0 ∝ ൗ𝐺0
𝐸𝛿 →   critical bond stretch 

Fundamentals of peridynamics
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Discretization:

 
j

n
ijij
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Numerical discretization

In the numerical implementation of the peridynamic approach, the body is 
discretized into grid points called nodes. 

 
j

n
ijij

n
i

n
j bxxuuf ΔV),(0

Dynamic analysis formulation

Static analysis formulation

Explicit solver 

Implicit solver 
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Damage under high cycle fatigue
• Light weight structures with high resistance and stiffness

• Ocean, Maritime in coastal engineering

• Aerospace engineering

• Industrial engineering and transportation industry 
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• Consider a cylinder of radius R which, under static loading, rolls in a 

clockwise direction on a horizontal surface.

• The lower layer is fixed. The upper layer adheres to the surface of the 

cylinder at the contact point, C and remains adhered.

• As the cylinder rotates and the contact point advances as the cylinder rolls 

along the horizontal surface the angle swept through by OA is the rotation, θ, 

of the cylinder.

Cylinder model 
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Stiffness degradation damage

(1 )D K  

In this approach the total damage,   , can be considered a measure of the degradation

of the initial stiffness
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can be written as𝐷𝑠

In fatigue problems two components of damage are considered

1-Static damage

2-Fatigue damage

sD

fD

𝐷𝑠 + 𝐷𝑓

𝐷

𝛿 Elongation in a spring

0 0/K  K is the stiffness:
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Static and Fatigue degradation strategies

 Rate of change of the static damage
.
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 Fatigue damage Strategies

First strategy

Second strategy

Third strategy
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The increment of total damage due to an increment  of the number of cycles (ΔN) is 

Fatigue rate is
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Second strategy

:c N N 
Is the failure displacement of a spring after N N 

, :B n Constants related to the material behaviour 

load cycles

Failure elongation of a spring in each increment of load cycle, N , is a function

of displacement as follows

0( )n

c N N c N N NB N       
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0 0

1 1c N N
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The total damage: 
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Third strategy

It is assumed that the fatigue damage term has an expression as

N N 

and       are constants related to the material behaviour

displacement of each spring after load cycles:N N 
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The increment of total damage due to an increment  of the number of cycles (ΔN) is 
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First fatigue Law Second fatigue Law Third fatigue Law

Therefore, the simple cylinder model seems to suggest that the third fatigue 

law is preferable

 ‘Exact slope’ (dXcon/dN) computed numerically using a small value 

of Δl (=0.005) and ΔN (=100).

 The value of the ‘exact slope’ is the same for all three formulations.
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Using a bilinear constitutive law, one may define the pairwise force 

function magnitude
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Double cantilever Beam Peridynamic Example

0.0161L 

0.0029W 

m

m

70E  GPa

0.005a  m

20rk 

0.048 NmaM 
grid spacing

56.27 10 ml   

41.06 10 ml   

41.25 10 ml   

N 

500

1000

10000

50000 15

Peridynamics implementation of the fatigue model



In this example, the crack length with respect to the number of load cycles, ,N

is computed by using the three fatigue strategies
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 Both the cylinder model and the DCB discretized with the peridynamic based code confirm that 

the third law is the best of the three considered in the present work because it is more stable with 

respect to the variations of the discretization parameters and it is cheaper from a computational 

point of view.



Simulation of thermo-mechanical problems in 

brittle materials 

• Propulsion systems of space rockets

• Nuclear fuel pallets

• Engine of the aircrafts
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Some issues: Uniform discretization

In the conventional way of numerical implementation, the body is discretized

into a uniform grid of points called nodes. (Approach by Silling, SA; Askari, E)

m= /x =2.25 in the figure

 [ ] [ ] ( )

( , ) ( )  , ( )

n n n n n n i
i j i j i j j njn
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j i j i j n j ij
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 

    





T x x x T x x x ξ b
u

f u u x x ξ b x x

Discretized formulation in dynamic analysis

• Due to multiple nonlocal interactions, 

peridynamic models are most often 

computationally more expensive that classical 

models

• Non-uniform discretization (variable horizon) 

leads to spurious reflection of waves and 

emergence of ghost forces 

• The whole domain must be refined when a denser 

grid spacing for localized areas is required; for 

instance, in the case of crack propagation and 

multi-scale modelling of materials 18



Discretization strategy

• the solution domain,  , is divided into two subdivisions:
 and 



• In this study, it is assumed that the finely discretized zone, 
 grows

only where it is essential 

ℎ𝑠:• Heat source due to volumetric heat generation

Temperature (    ), Heatflux (     ), Convection (     ) and radiation (     )

• Thermal boundary conditions

𝛤𝐹 𝛤𝑆1 𝛤𝑆2 𝛤𝑆3
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Adaptivity

0 0 , 0 1n
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Quenching test of rectangular specimen under central

thermal shock
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0 680  Initial temperature

300  The temperature of the surfaces contacted with water K

K



0.00014x  0.00028x 

Damage in the refined model Damage in the uniform model

0.00014x 

Experimental results of quenching test by (Shao et al. 2011)

Temperature in the refined model Temperature in the uniform model
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Crack frequency diagram

Comparison of the computational resources used

by uniform and refined models
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Sloshing phenomenonaSloshing phenomenona

• Ocean, Maritime and coastal engineering e.g. ballast tanks of ships

• Aerospace engineering and Propulsion systems

• Tuned liquid dampers

25
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The Peridynamic differential operator (PDDO)

• A new mesh-free method known as PDDO has been proposed by Madenci et 

al in 2016 and 2017.

• The capability of this operator is to construct solutions to ordinary and 

partial differential equations and derivatives of scattered data e.g. velocity 

potential. 

• Recast the numerical differentiation up to an arbitrary order through 

integration by using orthogonality properties of Peridynamic functions.

• Field equation and its derivatives are valid everywhere in the 

domain/boundaries.

• Obtain a unified solution for PDEs without any special treatment or 

derivative reduction process.
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Applying PDDO to liquid sloshing problems

• The derivatives of the scalar field (Potential flow) play an important role in 

updating the accuracy of velocities and geometry.

• Installing baffles inside liquid tanks is also a crucial issue in liquid sloshing 

problems.
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PDDO formulation-1

By considering the Taylor series expansion of a scalar field, ( ) ( )f f  x x ξ

PDDO in a two-dimensional domain, ( , )x yx can be constructed as
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PDDO formulation-2

By multiplying Peridynamic functions, ( )x yp p
g ξ , which possess an orthogonality property,

and then integrating them over the horizon of each node

2 2 2
2 2
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Since Peridynamic functions, x yp p
g , possess an orthogonality property
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PDDO formulation

30

00

10

01

2

20
2

02
2

112

2

( )

( )

( )
( )

( )

( )
( )( )

( )

( )( )

( )

( )

xH

f

f

x g
f

g
y

g
f dVf

g
x

gf

gy

f

x y

 
 


 

   
   
   

   
   

    
   
   

   
     
 

 
   



x

x

ξ
x

ξ

ξ
x ξx

ξ

ξx

ξ

x

Likewise

000

100

010

2

001
2

200
2

020
2

002
2

2

2

2

2

( )

( )

( )

( )
( )

( )

( )
( )

( )

( )
( ) ( )

( )

( )
( )

( )

( )

( )

xH

f

f

x

f

y
g

f
g

z
g

f
g

x
g

f f
gy
g

f
gz

f

x y

f

x z

f

y z

 
 


 

 
 
 

 
 
 

 
 
 

 
    
 
 

 
 
 

 
  
 

 
  
 

 
   



x

x

x

ξ
x

ξ

ξ
x

ξ

ξ
x x ξ

ξ

ξ
x

x

x

x

110

101

011

( )

( )

( )

dV

g

g

 
 
 
 
 
 
  
 
 
 
 
 
 
 
  

ξ

ξ

ξ

one can compute derivatives explicitly:

By considering the Taylor series expansion of a scalar field, ( ) ( )f f  x x ξ

2D 3D



Governing Lagrangian equations

• For an irrotational flow, potential 

flow theory can be used:

u 

• For an incompressible fluid:

0u

• Consequently, velocity potential, has to satisfy the Laplace equation:

2 0  in 

Boundary conditions 

T

n
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
n u

SOn

Dynamic free surface boundary conditions (DFSBC) 
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( ) ( . )

2 2

d H
g y

dt


      FOn 
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g=9.81         , ρ=1000 kg/m3m/s2

0.01t  s

Grid (PDDO): 12×5 Grid (VOF): 114×64

• Non-linear liquid sloshing under 

harmonic excitation

Periodic sinusoidal excitation:

𝑥𝑇 = −𝐴sin𝜔𝑡

0.005A  m01.0 , ,
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Comparisons of the time series of surface elevation 
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The Condition Number (CN) of the global stiffness matrix

1

2 2
CN  k k

0
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3000

3500
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4500

5000

0 1 2 3 4 5 6 7

C
N

Time (s)

PDDO Numerical solution Wu et al (2016)

• The histograph of the global stiffness matrix for non-linear liquid sloshing 

under lateral excitation.

• PDDO generates a well-conditioned sparse system of equations in time in 

comparison with local polynomial collocation method.



• 2D liquid sloshing in a tank with a vertical baffle

1.0L  m

0.5H  m

sinTx A t 

Periodic sinusoidal excitation:

5.29 rad/s  0.002A  m

Grid: 51×26

The height of the baffle: 0.75H

0.01t  s

Comparisons of the time series of surface elevation η at the right boundary of the tank. 
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• 3D nonlinear liquid sloshing under periodic excitations in a 

square tank

m

0.5H  m

Periodic excitation:

cos ( )sin ( ),  sin ( )cos ( )x yu A t u A t        

1.0L B 

30 

m 0.01t 0.005A 00.9 

Grid: 14×14×5

PDDO:

980 nodes are employed.

Local polynomial collocation method:

1005 nodes are employed.

s

0 4.4957 rad/s 
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PDDO Numerical Solution Wu et al (2016) Experiment

Comparison of the surface elevations obtained by the present method, polynomial 

collocation method and the experimental data at the corner of the tank . 
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Conclusions

 Fatigue crack propagation in structural components

 We compare three fatigue degradation strategies to be used in the simulation of fatigue crack 

propagation.

 The third fatigue degradation strategy is the best, among those investigated, for being used in BBPD 

codes.

 The cylinder model appears to provide reliable indications about the computational performance of 

the fatigue laws.

 Crack phenomena due to thermal shocks 

 This study presents an effective way to use a variable grid size in weakly coupled thermal shock 

peridynamic model.

 The refinement numerical method is equipped with stretch control criterion to transform the grid 

discretization adaptively in time. Hence, finer grid spacing is only applied in limited zones where it is 

required.



Conclusions

 Crack phenomena due to thermal shocks 

 The results confirm that the method is capable of producing the results of a standard peridynamic

model with uniform discretization at a much smaller computational cost. 

 Sloshing of fluids in tanks. 

 PDDO is capable to produce a well-conditioned system of equations for the problem which is 

important for marching in time. 

 2D and 3D challenging liquid sloshing problems with strong non linearity have been solved and the 

results are compared with other numerical/analytical/experimental results in literature. 

 To further validate the method, we investigate liquid sloshing in rectangular tanks containing vertical 

baffles.

 The newly proposed method (PDDO) is unique in its combination of high accuracy, high stability and 

low computational cost.
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