Spacecraft RendezVous and Docking (RVD) using electro-magnetic interactions

Ph.D. COURSE IN SPACE SCIENCES, TECHNOLOGIES AND MEASUREMENTS Curriculum STASA - XXX CYCLE

> Padova, 16 September 2016 Admission to III year

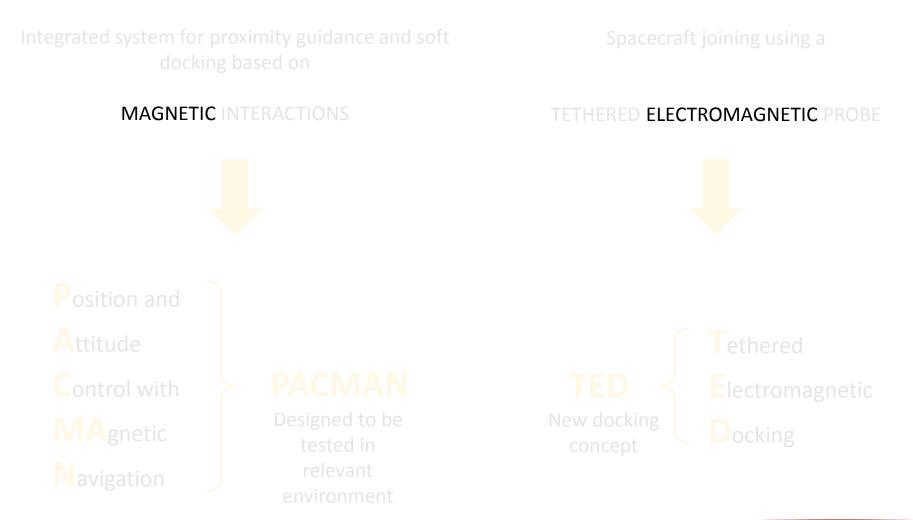
Ph.D. Candidate: Matteo Duzzi Supervisor: Prof. Alessandro Francesconi

Università degli Studi di Padova

Objectives

The goal of this research project is to study, with both numerical simulations and laboratory testing, viable strategies for spacecraft *RendezVous and Docking (RVD)* manoeuvres **exploiting electro-magnetic interactions**.

The *objectives* of this research project are:

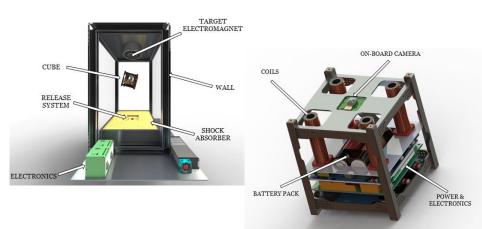

- 1) the development of dynamical models of electromagnetic close formation flight for RVD applications and their verification through experiments;
- 2) the development and experimental verification in relevant environment (micro-gravity) of electromagnetic soft docking interfaces.

Perspective Applications Investigated

UNIVERSITÀ

DEGLI STUDI

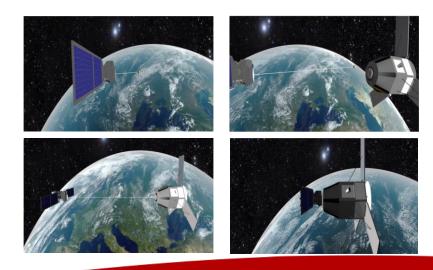
INTRODUCTION



Perspective Applications Investigated

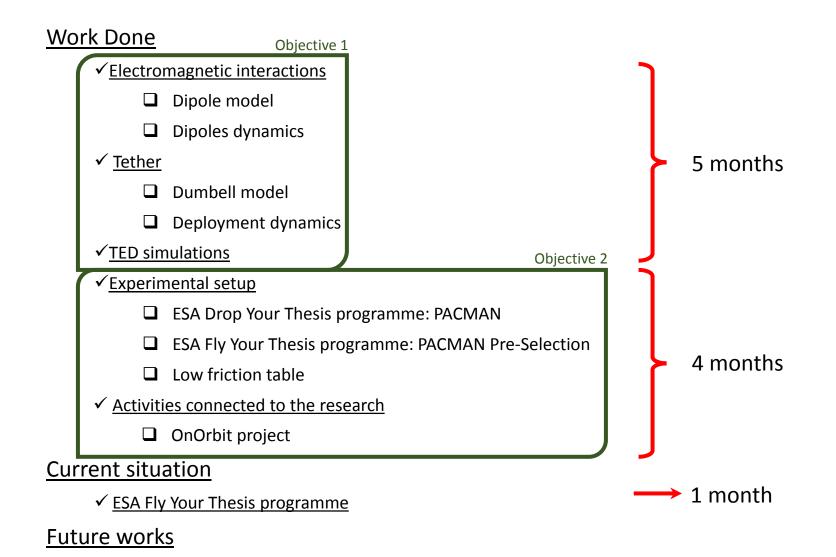
PACMAN

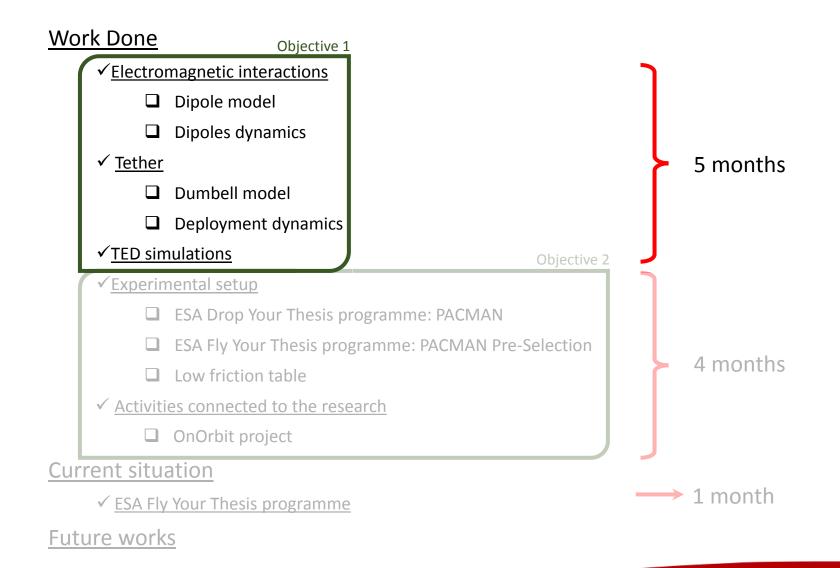
Features

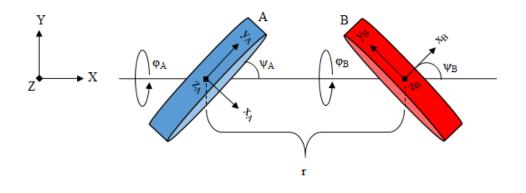

- 1) A testing chamber in which a 1U CubeSat will be free to float
- 2) 1U CubeSat equipped with a closed-loop system for proximity guidance based on electromagnetic coils
- 3) SUPPORT ELECTRONICS for experiment monitoring and "external remote control"

TFD

Features


- Tethered electromagnetic probe ejected by the 1) chaser toward a receiving electromagnetic interface mounted on the target spacecraft
- Automatic alignment between the two interfaces 2) exploiting the magnetic interactions
- Hard docking accomplished by tether retrieval 3)





Electromagnetic interactions

Dipole model

- The exact solution of the magnetic field equations contains integrals that cannot be solved analytically
- The first order expansion of the Taylor series is known as the far-field model (or magnetic dipole assumption)
- This model provides an analytical solution and it is easy to implement

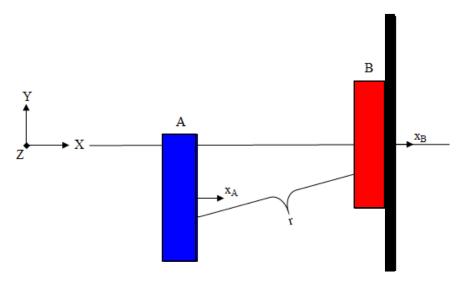
Attitude

Described through the second cardinal equation and the magnetic interaction between the dipoles

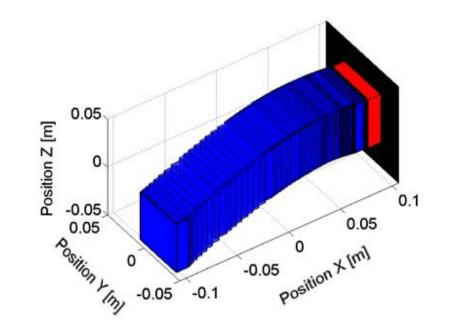
WORK DONE

Electromagnetic interactions

Dipoles dynamics



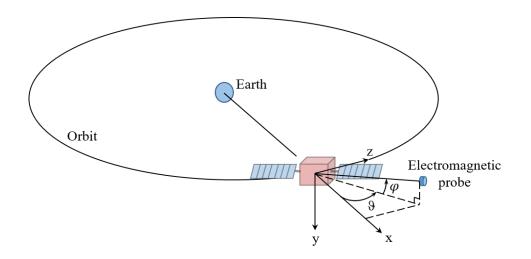
WORK DONE



Electromagnetic interactions

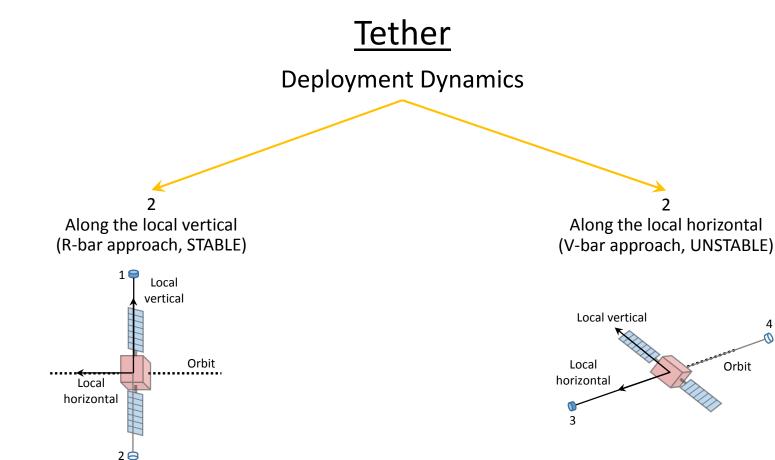
Dipoles dynamics

- Magnetic dipoles: two copper coils
- Diameter: 50 mm
- Turns: 480
- Mass: 0.081 kg
- Current: 0.5 A
- Power: 1 W
- Probe c.o.m.: (-0.1,-0.02,-0.02) m



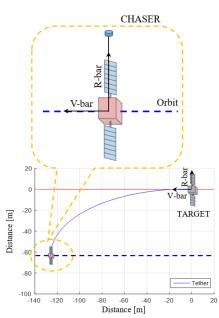
<u>Tether</u>

Varyng length dumbbell model

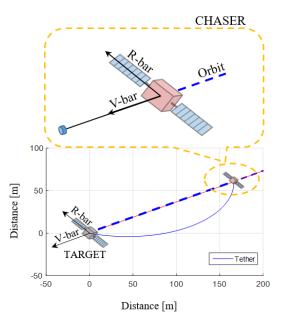


Attitude Described by three variables: length *I*, <u>in-plane libration angle</u> θ and out-of-plane libration angle φ

Electromagnetic probe with relevant velocity Docking manoeuvre performed once per orbit Reliability: in case of an unsuccessful deployment, the tether can be rewound and deployed again without waiting an entire orbital period



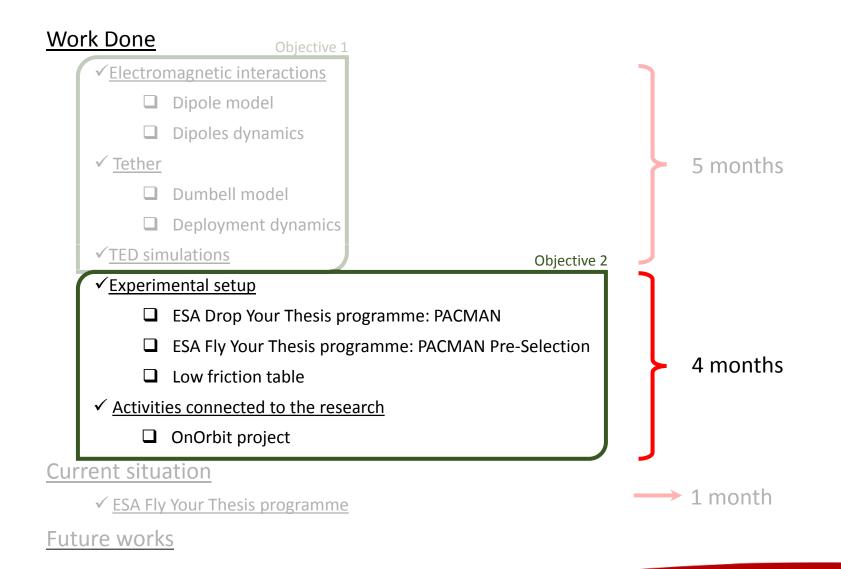
TED Simulations


R-bar Approach

Spacecraft orbit: circular (600 and 600.06025 km) Distance Target-Chaser: 60.25 m

Deployment velocity of the tether: 0.075 m/s Total deployment time: 1458s (~ 25 min) Final tether length: 146.4 m V-bar Approach

Spacecraft orbit: circular (600 km) Distance Target-Chaser: 175.4 m



Deployment velocity of the tether: 0.075 m/s Total deployment time: 1786 s (~ 30 min) Final tether length: 176 m

Experimental Setup

ESA Drop Your Thesis! 2016 programme - PACMAN

Perform scientific or technological research in microgravity conditions (10⁻⁶ g for about 5 to 10 seconds) using ZARM Drop tower

ceesa	cesa
Team's Name: PACMAN Title of the project: Position and Attile & Control with MAgnetic Navigation Contact e-mail address: Control with Magnetic Navigation Contact problementsity address: Contact problementsity address: Mattero Dura: Contact problementsity address: Mattero Dura: Contact problementsity address:	ESA-DOC-DET-2015-1222 Drop your Thesis! 2016 Experiment Proposal
Place Book of the second secon	he Experiment Proposal Mooid form on the scientific and/or technology-related objectives of the project of on the technical dealls of the implementation of the despinitures. In other words, the hypertegnates words to explain what they intend to investigate and how they are going to implement their experiments income to completing this Experiment Proposal template, teams should carry out some results of the scientific literature are essential in order for your to demonstrate that you and unformed about the unrest status of research in the first. The Experiment Proposal must also explain the science of microgravity to the project on A in science to Harrison of the EANA D methods and the science of a constraint of the science of the science of units of the Carry on the Marking and the science of the science of the experiment first of explain the science of microgravity to the project of A is a science of the science of experiment first of explain a science of the science of the science of the science of the science of the science of the science of the science of the science of the science of the science of the science of the science institute of various fields and explanes; with a science of the science of the science of various fields and explanes; where the science of the science of the science of the science of the science of various fields and explanes; where a science of the science of the science of the science of various fields and explanes; where a science of the science of the science of the science of the science of th
Europan Space Age Anno 24	European Space Agency Assert

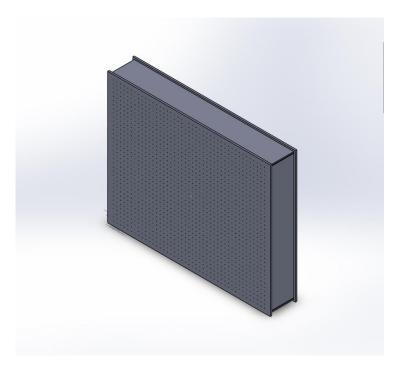
The design of the electromagnetic interfaces together with the experimental setup have been carried out during the proposal writing

Experimental Setup

ESA Fly Your Thesis! 2017 programme - PACMAN Pre-Selection

Perform scientific or technological research in low-gravity conditions (10⁻³ g for about 10 to 20 seconds) using Airbus A310 Zero-G airplane. Each campaign consists of a series of three flights of 30 parabolas each.

Experimental Setup

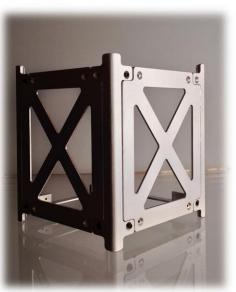

Low Friction Table

The experiment design, feasibility studies performed and all the work done to participate to ESA programmes are still effective and applicable for laboratory testing with minor changes

Features:

- Dimensions: 100x80 cm
- Holes diameter: 3 mm
- Holes distances: 2.5 cm
- Pressure: ~3 bar
- Hover load: ~5 kg

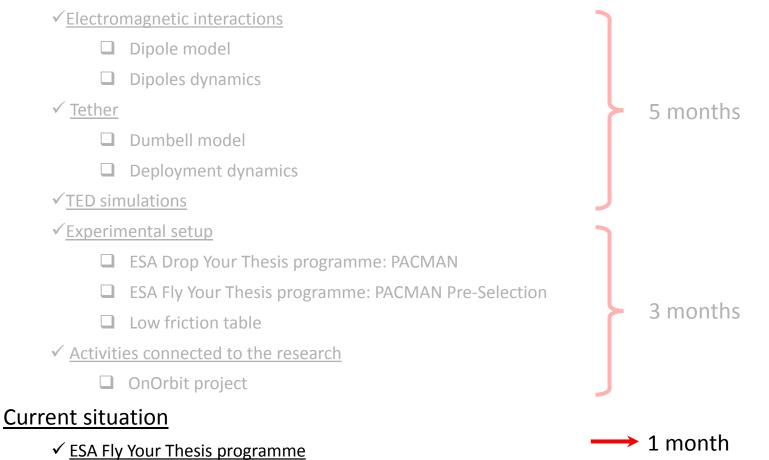
Status: still under development End of the year (2016): "Nice 'n ready"



Activities connected to the research

OnOrbit Project

Preliminary studies for the development of a CubeSat



Work Done

Future works

ESA Fly Your Thesis! 2017 programme

PACMAN Selection Workshop

Last option

CORA (Continuously Open Research Announcements) ZARM Drop tower

Backup solution

Low friction table

Conferences

- 4S Symposium Small Satellite Systems and Services. Malta, 30 May 3 June 2016.
- **ESA Fly Your Thesis Selection Workshop.** Den Haag, 21-22 September 2016.
- > 67th International Astronautical Congress. Guadalajara, 26-30 September 2016.

Pubblications

- SCRAT Experiment: a student experience. M. Duzzi, L. Olivieri, A. Francesconi. In: 1st Symposium on Space Educational Activities. Padova, 9-11 December 2015.
- Tether-aided spacecraft docking procedure. M. Duzzi, L. Olivieri, A. Francesconi. In: 4S Symposium (Small Satellites, Systems & Services). La Valletta, 30 May 03 June 2016, Malta.
- Spacecraft joining using a tethered electromagnetic probe. M. Duzzi, G. Grassi, L. Olivieri, A. Francesconi. In 67th International Astronautical Congress. Guadalajara, 26-30 September 2016.
- Tethered docking systems: advances from FELDs Experiment. D. Petrillo, M. Gaino, M. Duzzi, G. Grassi, A. Francesconi. In 67th International Astronautical Congress. Guadalajara, 26-30 September 2016.
- Discontinuous mechanical problems studied with a peridynamics-based approach. Mirco Zaccariotto, Giulia Sarego, Daniele Dipasquale, Arman Shojaei, Teo Mudric, Matteo Duzzi, Ugo Galvanetto. AIDAA2015.
- Semi-androgynous multifunctional interface for expandable space structures. Lorenzo Olivieri, Andrea Antonello, Matteo Duzzi, Francesco Sansone, Alessandro Francesconi. IAC2015.
- Numerical simulations and experimental tests results on a smart control system for membrane structures. Laura Bettiol, Francesco Branz, Andrea Carron, Matteo Duzzi, Alessandro Francesconi. IAC2015.
- Tethered electromagnetic capture: a CubeSat mission concept. Lorenzo Olivieri, Francesco Branz, Matteo Duzzi, Riccardo Mantellato, Francesco Sansone, Enrico C. Lorenzini, Alessandro Francesconi. IAC2015.

CURRENT SITUATION

Level			Activity description (WP title)		l year			ll year				III year		
				Presentation for approval of Research	▼					1				
1			-	BACKGROUND & MOTIVATIONS										
				State of the Art										
				Standard rendezvous manoeuvre										
				Standard docking manoeuvre										
				E-M formation flight										
	2			Objectives & Reasearch Statement										
		1	0	Definition of the E-M docking approach										
	3	0	0	Trade Off										
		1	0	Perspective applications										
			1	On-orbit servicing										
			2	On-orbit assembly										
2	_	_	-	RENDEZVOUS & DOCKING MODELLING										
				E-M Rendezvous & Docking Modelling										
	Eve			Admission to II year				▼						
		1	_	Models definition										
				E-M interfaces										
				Tether										
		2		Simulations										
				E-M probe dynamics										
				Tether dynamics										
			3	E-M docking manoeuvre										
											\checkmark			
-				Admission to III year								v		
3				EXPERIMENT DESIGN & TESTING										
	1			E-M Interfaces										
				Design of the E-M interfaces	_									
	2			Experimental Setup									✔	
	_			Design of the low friction table										
	3	-		Testing in Relevant Environment		-		└──└					· · ·	1
	_	1		Application to ESA DYT!2016 programme (done)		-		└───┣						
				Application to ESA FYT!2017 programme (in progress)										
		3	0	Application to ESA CORA programme (TBD)						-+	_			
					_					_	_			
4	0	0	0	THESIS			+			_	_			
					_	-					\rightarrow			
				EDUCATIONAL ACTIVITIES										

Future works

End of September 2016

- 1. Fly Your Thesis! 2017 programme
- 2. CORA

October – December 2016

- 1. Improve the code
 - (study tether retrieval)
 - (implement the Near Field model)
- 2. Conclude the experimental setup (low friction table)

January – September 2017

- 1. Testing
- 2. Write the Thesis
- 3. Write paper/articles
- 4. Period abroad?

THANK YOU FOR YOUR KIND ATTENTION! ANY QUESTIONS?