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Framework Introduction

Framework

Plasma exhibits complex Electromagnetic (EM) wave phenomena.
It can be exploited in a broad range of advanced application:

Space Propulsion:

Plasma Thrusters

Space Communication:

Gaseous Plasma Antennas
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Framework Introduction

Plasma propulsion systems

Use electric power to ionize the
propellant and impart kinetic
energy to the plasma.

Critical issues:

Limited lifetime

Need for an external cathode

Low power density.
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Framework Introduction

Plasma propulsion systems

Use electric power to ionize the
propellant and impart kinetic
energy to the plasma.

Critical issues:

Limited lifetime

Need for an external cathode

Low power density.

Helicon Plasma Thruster (HPT)
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Framework Introduction

Gaseous Plasma Antennas (GPAs)

Devices relying on an ionized gas to
radiate EM waves.

Feautures:

Electrically reconfigurable;

Low RCS, and thermal noise;

Minimize co-site interference
and signal degradation;

Virtually transparent above the
plasma frequency and invisible
once turned off.
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Motivation, and objectives

Motivation, and Objectives

Although different in shape, fields of applications, and working conditions,
GPAs and HPTs share:

Plasma generation

Wave-plasma coupling
Plasma transport
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Motivation, and objectives

Motivation, and Objectives

Objectives

Physical investigation into plasma generation, charged particle
transport in a magnetized plasma, and wave-plasma coupling
mechanism

Clarify the role of the antenna in the source of HPTs, and the
behavior of GPAs taking into account realistic excitation circuit and
plasma transport

Coupling of the EM solution with the plasma transport

Design, and development of two innovative plasma sources.
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Project description Where were we?

Where were we? I
Plasma models

Plasma transport

within a plasma source modeled
by a 0-D fluid model.

Global Model

It solves for the density profile.

Wave plasma coupling

modeled throug a dyadic
permittivity

εrk =

 Sk jDk 0
−jDk Sk 0

0 0 Pk



ADAMANT

Full-wave numerical tool
It solves the EM problem.
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Project description Where were we?

Where were we? II
First steps on numerical analysis on GPAs
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Project description Where were we?

Where were we? III
First steps on experimental approach

Pyrex glass vacuum vessel -
high thermal and mechanical
resistance, good dielectric,
cheap and easy to
manufacture

Copper electrodes - easy
manufacturing and soldering
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Project description Where we are now...

Numerical and Experimental Approach
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Project description Where we are now...

Numerical Work

We worked on the coupler, and the plasma discharge geometries to move
resonances on a more suitable range of frequencies

Plasma Φ 10 mm
Column length 60 mm
Column distance 6 mm
Neutral gas Ar, He, Ne
Metal-coupler length 42 mm
Metal-coupler Φ 14 mm
Electron temperature 3 eV
Neutral pressure 1 mbar
Plasma density 1018 − 1019 m−3

Working frequency 0.8 − 1.8 GHz
Voltage 1 V
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Project description Where we are now...
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Project description Where we are now...

Experimental approach

GPA

Evaluate:

Bandwidth

Gain

Radiated fields

with different

gas types

plasma densities

excitation circuit geometries

Diagnostics

Plasma characterization

Microwave
interferometer

CCD Cameras with
band-pass filters
(488BP10 and
751BP10)

GPA performances

Spectrum analyzer

Vector Network
Analyzer
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Project description Where we are now...

Experimental work

Electrodes Optimization

First prototype led to inhomogeneous plasma discharges
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Project description Where we are now...

Experimental work

Electrodes Optimization

New electrodes enhance plasma homogeneity
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Project description Where we are now...

Experimental work

Plasma characterization
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Project description Where we are now...

Experimental work

Antenna Measurements

Power received measurements using a
well known LOG-HALLO antenna as
transmitter

By means of Friis
Transmission Equation we
can calculate antenna gain:
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Project description Future work

Future work

Numerical analysis on GPA, and on Helicon sources

Tests on GPA

Experimental validation of the codes

Design of a plasma source for GPA, and of a Helicon plasma source
for space applications
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Project description Future work
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