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Framework

Plasma exhibits complex Electromagnetic (EM) wave phenomena.
It can be exploited in a broad range of advanced application:
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Framework

Plasma exhibits complex Electromagnetic (EM) wave phenomena.
It can be exploited in a broad range of advanced application:
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Space Propulsion: Space Communication:

Plasma Thrusters Gaseous Plasma Antennas
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Plasma propulsion systems
Use electric power to ionize the
propellant and impart kinetic
energy to the plasma.
Critical issues:

@ Limited lifetime

@ Need for an external cathode

o Low power density.
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Gaseous Plasma Antennas (GPAs)
Devices relying on an ionized gas to
radiate EM waves.
Feautures:

o Electrically reconfigurable;

@ Low RCS, and thermal noise;

@ Minimize co-site interference
and signal degradation;

o Virtually transparent above the
plasma frequency and invisible
once turned off.
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Gaseous Plasma Antennas (GPAs)

Devices relying on an ionized gas to
radiate EM waves.

Plasma .
discharge Feautures:
Exchationclreule o Electrically reconfigurable;
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Plasma genetation @ Minimize co-site interference
T E— and signal degradation;
Insulation

o Virtually transparent above the
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Motivation, and objectives

Motivation, and Objectives

Although different in shape, fields of applications, and working conditions,
GPAs and HPTs share:
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Motivation, and Objectives

Although different in shape, fields of applications, and working conditions,
GPAs and HPTs share:
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Plasma generation
J Wave-plasma couplingJ

Plasma transport J
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Motivation, and objectives

Motivation, and Objectives

Objectives
@ Physical investigation into plasma generation, charged particle
transport in a magnetized plasma, and wave-plasma coupling
mechanism
o Clarify the role of the antenna in the source of HPTs, and the
behavior of GPAs taking into account realistic excitation circuit and
plasma transport

@ Coupling of the EM solution with the plasma transport

@ Design, and development of two innovative plasma sources.
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(MG \Where were we?

Where were we? |

Plasma models

Plasma transport

within a plasma source modeled

by a 0-D fluid model.

!
Global Model

It solves for the density profile.
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Where were we?
Where were we? |

Plasma models
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Where were we?
Where were we? I

First steps on numerical analysis on GPAs
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First steps on numerical analysis on GPAs
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(MG \Where were we?

Where were we? I

First steps on numerical analysis on GPAs

(T @
ki
! 5.5
I ’ '
I &
! 4.5
| .
I HH4
I 3.37
1 3.5 GHz
= A
) N I
It 5~ : \WQ/
I 3 i 335
1GHz)

1 [P3 006 PEC |

oo dipole  plasma ||
I B \ dipole “~-._ I I
1 0.02 s —
1 B e, ! R
| Y 15 2 &% ° 35 2 1 Sl i

1 335 34 345

I It [GHz]
1 Bos 'S 1 5
I o 1 4 5 6 .o

P. De Carlo (CISAS - STMS) September 16th, 2016 7 /17



(MG \Where were we?

Where were we? IlI

First steps on experimental approach

@ Pyrex glass vacuum vessel -
high thermal and mechanical
resistance, good dielectric,
cheap and easy to
manufacture

o Copper electrodes - easy
manufacturing and soldering

Pressure
gauge

RF power

Gas
injection
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Project description Where we are now...

Numerical and Experimental Approach

Plasma source
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Project description Where we are now...

Numerical Work

We worked on the coupler, and the plasma discharge geometries to move
resonances on a more suitable range of frequencies

Plasma ¢ 10 mm

Column length 60 mm plasma discharges
Column distance 6 mm

Neutral gas Ar, He, Ne
Metal-coupler length 42 mm

Metal-coupler ¢ 14 mm
Electron temperature 3 eV

Neutral pressure 1 mbar

Plasma density 10 — 1019 m~—3
Working frequency 0.8 —1.8 GHz
Voltage 1V
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Project description Where we are now...
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(MM  \Where we are now...

Experimental approach

Diagnostics
Plasma characterization
GPA @ Microwave
Evaluate: interferometer
o Bandwidth e CCD Cameras with
e Gain band-pass filters
o Radiated fields (488BP10 and
with different 751BP10) )
© gas types N GPA performances
© plasma densities @ Spectrum analyzer
@ excitation circuit geometries o Vector Network
Analyzer E;QE
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Project description Where we are now...

Experimental work

Electrodes Optimization

First prototype led to inhomogeneous plasma discharges
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Project description Where we are now...

Experimental work

Electrodes Optimization
New electrodes enhance plasma homogeneity

Ring Planar
electrodes

electrodes
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(Mgl \Where we are now...

Experimental work

Plasma characterization

Plasma density vs RF Power to plasma
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(Mgl \Where we are now...

Experimental work

Antenna Measurements

Power received measurements using a
well known LOG-HALLO antenna as
transmitter

By means of Friis
Transmission Equation we

can calculate antenna gain:
2

A
Gr = P—r - Pt - Gt -10 logm (m)
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Project description Future work

Future work

Numerical analysis on GPA, and on Helicon sources
Tests on GPA

Experimental validation of the codes

Design of a plasma source for GPA, and of a Helicon plasma source
for space applications
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Project description Future work

Thanks for
your attention
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