Vibration and clearance measurements using magnetoresistive sensors

CISAS, 24 October 2016

PhD Candidate: Roberto Tomassini

Supervisor: Gianluca Rossi

von Karman Institute - University of Perugia - CISAS, Padova

Introduction

Sensor Test Developments

BTT & BTC MEASUREMENT SYSTEMS

Contactless Measurement System of:

- The **gap** beetween the blade tip and the casing
- Blade vibrations

Sensors: Optical, Capacitive, Eddy current, Microwave, ...

Objective of the PhD Project: BTT & BTC measurement system based on magnetoresistive sensors

Starting from:

- Marie Curie of Prof.G.Rossi
- VKI Research Master of R.Tomassini
- (no strain gauge telemetry system, no commercial BTT & BTC system)

INNOVATION: APPLICATION OF THE MAGNETORESISTIVE SENSOR IN TURBOMACHINERY TESTING

ΔV= f(ϑ)

 ΔV : Signal Output

M: Magnetic field

I: Current

 $\boldsymbol{\vartheta} : Angle \ between \ M \ and \ I \ vectors$

 $\Delta \vartheta \rightarrow$ Change resistance $\rightarrow \Delta V$

Magnetoresistivity is the ability of a material (e.g. Permalloy) to change resistance under the influence of magnetic fields

4

How to realize a sensor?

The magnetoresistive sensor

5 mm

Introduction Sensor The magnetoresistive sensor Test Developments U υ Cylindrical magnet 12.5 mm 4 mm x-y sliders Magnet permanent magnet 20 15 10 Sensor (fix) sensing element (fix) 5 mm Cubic rotating blades 5 mm magnet mV 5 mm 40,00 35,00 30,00 25,00 ΔV at the blade 20,00 15,00 passage 10,00 5,00 0.00 39 34 29 24 19 axis x [mm] 14 axis y [mm] 9

Introduction **The FEM Model** Sensor Test Developments Permanent AMR magnet Sensor θ d₁ Compressor blade d_2 1.5 a.u. The mesh of the Measured 1 compressor blade for O Computed 0.5 different positions 0 Ô -0.5 Permanent -1 magnet Angle θ [deg] -1.5 -25 -20 -15 -10 -5 0 5 10 15 20 25

The measurement chain

Test Developments

The signal at the blade passage

Test Developments

The signal at the blade passage

1000 -

Test Developments

The signal at the blade passage

blade tip

1000 -

The BTT & BTC calibration bench

The BTT & BTC calibration bench

BTT

Probe

Sensor Test Developments

Introduction

A **shaker moves the BTT probe** and a displacement sensor records the imposed vibration

The BTT & BTC calibration bench

15

A **shaker moves the BTT probe** and a displacement sensor records the imposed vibration

Imposed sensor vibration: 100Hz, Amplitude A=0,1mm, always present up to 13000rpm Vibration peaks @ 4000 rpm (asynchronous) and @ 6000 rpm (synchronous), A = 0,2mm

The waterfall of the measured displacements

Simulated resonances @ 4000 and 6000 rpm

The waterfall of the measured displacements

Processing method: window of N samples, successive FFTs

1) Speed change \rightarrow Fs change

Frev. < Fvib. Aliasing: 2) FOLDED FREQUENCIES

The individual blade spectrogram

The individual blade spectrogram

The individual blade spectrogram

Vibration measurement at fixed speed

Working conditions: The blade position simulates the sensor position

Rotor: 4 blades at [0,30,90,270]°

DAS: 12 bits, Fs 2MHz

Test case: F.vibration: **60Hz Amp: 0,3mm** F.rotation: 60Hz (3600 rpm)

F.vibration: 60 Hz = F.rotation 1 sensor and 4 samples per rev: NO ALIASING

Measured vibration amplitude

Measured frequency

Spectrum of the **imposed** vibration

27

The **measured frequency** is the same of the imposed one. The **measured amplitude** is 0,25mm, the **imposed** is 0,3mm

Test at ITWL on a real engine

PZL_TS-11_Iskra Polish_Air_Force

The SO-3 Jet Engine

Dr. Radoslaw Przysowa Air Force Institute of Technology - ITWL - Warsaw

Test Developments

Test at ITWL on a real engine

The SO-3 turbojet engine: Thrust 10 kN, 7 comp stages, $\pi = 4,69$, m = 17,8 Kg/s 2° stage: 41 blades, Rtip = 207mm

lades, Rtip = 207mm

Dr. Radoslaw Przysowa Air Force Institute of Technology - ITWL - Warsaw

4 sensors in the second compressor

The waterfalls of the measured displacements

Introduction Sensor Test

Get data plot digitizer

Test in the R2 compressor rig

High speed compressor driven by a 185kW DC motor. The rotational speed can vary up to 6000 rpm. It is a single stage axial compressor with a 400 mm tip diameter test section. The rotor is composed of 24 subsonic blades of the NACA 65 family.

3 BTT sensors at [0 90 180]° Speed transient: 2000 to 5500 rpm Fs: 1 MHz

Test in the R2 compressor rig

- Inlet distortion grid → excite synchronous blade resonances
- <u>Air injection</u> → excite asynchronous blade resonances

Test in the R2 compressor rig

35

Test in the R2 compressor rig

36

Introduction Sensor Test

Effect of the gap variation

Effect of different blades

Different Blades

It is possible to measure clearance but it requires a normalization

First sensor prototype

Differential sensor

Differential sensor

Blade passage \rightarrow two pulses:

Differential sensor

1.6**S1** Cal1 1.5 S2 1.4 Output [V] 1.3 1.2 11 0.9 0.8 2.5 1.5 2 Displacement [mm]

<u>Typical calibration</u> (sensor S1): Range: 0,5mm – 2,5mm Step: 0,5mm

1 mm shift \$1 \$2 Permanent magnet

Differential sensor

Conclusions and future developments

Magnetoresistive sensors can be used for simultaneous BTT and BTC measurements

Features: small size, fast rise time, cheap technology, high S/N, possibility to measure withouth making holes

Limitations:

need of ferromagnetic materials (or special expedients)

Developments:

Rotary dies monitoring ? Anti – Aliasing algorithm ? Applications at higher temperature ?

THANK YOU!