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Goals:

extend quantum communication to MEO and GEO satellites
[D. Dequal, et al., PRA 93, 010301(R) (2016)]

proof of principle of new quantum communication protocols

Characteristics of the new setup:

new detectors with improved time accuracy (∼ 40ps jitter)
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new time-tagging unit (1ps resolution, ∼ 10ps jitter)

new data analysis software



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o

r 
1

 s
e

c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o

r 
1

 s
e

c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o

r 
1

 s
e

c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o

r 
1

 s
e

c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o

r 
1

 s
e

c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o

r 
1

 s
e

c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o
r 

1
 s

e
c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Source of polarization-entangled photons

Source of polarization-entangled photons

0 20 40 60 80 100 120 140 160 180
0

2000

4000

6000

8000

10000

12000

14000

16000

Angle of polarizer 2 [°]

C
o
in

c
id

e
n
c
e
s
 f
o
r 

1
 s

e
c

 

 

p2 = 45°

p2 = 90°

p2 = 135°

p2 = 0°

Characteristics:

high brilliance
(≥ 100 kHz with few mW of pump power)

narrow bandwidth (< 0.2 nm)

tunable wavelength

high visibility
(> 98% in two mutually unbiased bases)

adapt for integration into
space missions
[L. Xin, Physics World (August 16, 2016)]



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”
⇓

any attempt to intercept the communication is detectable
⇓

Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”

⇓
any attempt to intercept the communication is detectable

⇓
Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”
⇓

any attempt to intercept the communication is detectable

⇓
Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”
⇓

any attempt to intercept the communication is detectable
⇓

Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”
⇓

any attempt to intercept the communication is detectable
⇓

Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”
⇓

any attempt to intercept the communication is detectable
⇓

Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Quantum Key Distribution

Quantum Mechanics: “measurements always disturb the system”
⇓

any attempt to intercept the communication is detectable
⇓

Quantum Key Distribution

Some protocols:

BB84: uses 4 states in 2 non-orthogonal basis
PROS: loss tolerant (it works for QBER up to 11%)
CONS: 4 detectors, or 2 detectors and active basis selection

B92: uses 2 non-orthogonal states
PROS: 2 detectors

CONS: eavesdropper can hide behind channel losses



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states

⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers

⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states

⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers

⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states ⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers

⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states ⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers

⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states ⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers

⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states ⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers ⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-state Quantum Key Distribution

Equiangular three-state Quantum Key Distribution

3 symmetric states ⇒ 3 detectors

X

Z

loss tolerant (it works for QBER up to 9.81%)

entanglement-based version with
passive receivers ⇒ high stability

0 20 40 60 80 100
time [min]

0

2

4

6

8

10

QB
ER

 [%
]

QBER
6000

8000

10000

12000

14000

16000

Ke
y 

ge
ne

ra
tio

n 
ra

te
 [b

ps
]

Secure key

Sifted key



Introduction Space experiments Laboratory experiments Conclusions

Three-observer Bell inequality violation

Bell’s inequality

Einstein-Podolsky-Rosen (1935):

“[. . . ] the quantum-mechanical description of physical
reality given by wave functions is not complete.”

Bell (1964):

all correlations explicable by a local model must satisfy the
inequality

SCHSH ≤ 2

Quantum mechanics:
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Main results of this thesis work:

setup of a source of polarization-entangled photons and its
exploitation for quantum communication experiments,

proof that time-bin encoding is exploitable for satellite
quantum communication.

Future perspectives:

further exploitation of the source for experiments in free-space,

extend satellite quantum communication to MEO and GEO
satellites, with the test of new protocols.
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