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Equation of motion 
• For a given body 𝑅0, the equation of motion of an infinitesimal particle of material is 

defined by means of the following expression: 

u → displacement vector field 
ρ → mass density 
b → body force density 
𝝃= 𝒙𝑗−𝒙𝑖  →  initial relative position 
η = 𝒖𝑗−𝒖𝑖 → relative displacement 
 

Images by W. Liu and J.W. Honget 

𝐻𝒙𝑖 = 𝒙𝑗 ∈  𝑅0: 𝒙𝑗 − 𝒙𝑖 ≤ 𝛿  HORIZON 

𝒇 𝜼, 𝝃 = 𝑓(𝜂, 𝜉)
𝝃 + 𝜼

𝝃 + 𝜼
 PAIRWISE FORCE FUNCTION 

𝜌𝒖 𝒙𝑖 , 𝑡 = 𝛻[𝜎] + 𝒃(𝒙𝑖 , 𝑡) 

𝜌𝒖 (𝒙𝑖 , 𝑡) =  𝒇 𝒖 𝒙𝑗, 𝑡 − 𝒖 𝒙𝑖 , 𝑡 , 𝒙𝑗 − 𝒙𝑖 𝑑𝑉𝑗 + 𝒃(𝒙𝑖 , 𝑡)
 

𝐻𝒙𝑖
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Constitutive law 
• A brittle elastic material is modeled adopting the constitutive law called PMB 

(Prototype Microelastic Brittle). The scalar pairwise force function takes the form:  

𝑓 𝜂, 𝜉 = 𝜇(𝜉) ∙ 𝑐 ∙ 𝑠 𝑠 =
𝝃 + 𝜼 − 𝝃

𝝃
 stretch of the bond 

𝑐 ∝  
𝐸

𝛿3
 micromodulus 

𝜇 𝜉 =    
1    𝑖𝑓 𝑠 < 𝑠0 ∝  

𝐺0
𝐸𝛿
 

                                    
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

E:= Young’s modulus 
G0 := Fracture energy 
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Damage definition 

• It is possible to define a non-ambiguous state of material damage at every 
point 𝒙𝑖of the body as: 

𝜙 𝒙𝑖  = 0 means undamaged state 

𝜙 𝒙𝑖  = 1 means all broken bonds 

Images by ing. M. Duzzi 

𝜑 𝒙𝑖 =
𝑏𝑟𝑜𝑘𝑒𝑛 𝑏𝑜𝑛𝑑𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑜𝑛𝑑𝑠
  

Page 5 of 25 CISAS 2016, Padova 



Some remarks about the numerical discretization 

• Mesh-free method with a uniform structured grid and the Gauss quadrature 
mid-point space integration solved through the Velocity-Verlet explicit scheme: 

𝜌𝒖 𝑖
𝑛 = 𝒇(𝒖𝑗

𝑛 − 𝒖𝑖
𝑛, 𝒙𝑗 − 𝒙𝑖)𝑉𝑗𝛽𝑗

𝑗

+ 𝒃𝑖
𝑛, ∀ 𝒙𝑗 ∈ 𝐻𝑥𝑖  

m ratio=δ/Δx 

δ – convergence 
 (δ↘, m=constant) 

m – convergence 
 (m↗, δ =constant) 
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Partial Area - 
PDLAMMPS algorithm 

𝜌𝒖  
 
𝑖
𝑛 = 𝒇 𝒖𝑘

𝑛 − 𝒖𝑖
𝑛 , 𝒙𝑘 − 𝒙𝑖

′
 𝛽𝑖∆𝑉𝑘 −

𝑘

 𝒇(

𝑗

𝒖𝑗
𝑛 − 𝒖𝑖

𝑛 , 𝒙𝑗 − 𝒙𝑖)𝛽𝑗∆𝑉𝑗 + 𝒃𝑖
𝑛 , ∀ 𝒙𝑘 ∈ 𝐻𝒙𝑖

′  , ∀ 𝒙𝑗 ∈ 𝐻𝑥𝑖  

Improved Partial Area 
Hybrid 
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AGRS 

Selected coarse node by 
trigger 

old horizon 

new horizon 

δ – convergence 
 (δ↘, m=constant) 

• The adaptive refinement and scaling allows to reduce in automatic mode (by means of a 
trigger) both the grid spacing and the horizon only in the regions of interest, as in the 
proximity of the crack tips during their propagation : 

        

𝑊 𝒙𝑖 ≥ 𝑊𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 based on potential energy (suggested in 
literature)  

∆𝜙 𝒙𝒊 =  𝜙 𝒙𝒊 − 𝜙0 𝒙𝒊 > 0 

 based on damage state, introduced by us 

𝜙0 𝒙𝒊  is the initial damage state of the nodes 
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How the AGRS works 

AGRS starts after an appropriate time 
determined by carrying out a preliminary 

analysis on the coarse grid  
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Static Test 
• A 2D static elastic linear problem is addressed through the comparison of the numerical 

peridynamic solution with the analytical solution of classic theory of mechanics: 

𝑢𝑋 = 𝑋, 𝑌 = 0 =
𝑝

𝐸
𝑋 

p p 

𝑢𝑦 = 𝑋 = 0, 𝑌 = −𝜐
𝑝

𝐸
𝑌 

• Example of 2nd level of refinement and scaling applied: 



Static Test 
• The PD solution between Scaling and Scaling & Dual-horizon formulation are compared for 

the 1st level of refinement/scaling: 



Static Test 
• The PD solution between Scaling and Scaling & Dual-horizon formulation are compared for 

the 3rd level of refinement/scaling: 



Static Test 
• The comparison between the solutions obtained by applying different levels of 

refinement/scaling highlights that higher levels of refinement do not affect the result: 

𝐿2 𝑒𝑟𝑟𝑜𝑟 =
1

𝑞

 (𝑢𝑖
𝑃𝐷 − 𝑢𝑖

𝑎𝑛𝑎𝑙𝑖𝑡𝑦𝑐𝑎𝑙
)2

𝑗
𝑖=1

 ( 𝑢𝑖
𝑃𝐷 )2

𝑗
𝑖=1

 

• The convergence study on m ratio shows as the rate of convergence of the refined region is 

higher than the coarse one: 



Addressing grid sensitivity in peridynamics 
• Problem of a 2D pre-cracked square plate subjected to a traction load: 

0.25 m 

0.125 m 

0.05 m 

• The grid is rotated with 
rispect to the direction of 
pre-crack line 

• Quasi-Static and Dynamic 
analysis 

Page 13 of 25 CISAS 2016, Padova 



• Waves propagation regarding the dynamic case of the grid rotated of 10° with m = 3: 

Addressing grid sensitivity in peridynamics 

Page 14 of 26 CISAS 2016, Padova 



Addressing grid sensitivity in peridynamics 

• Crack paths obtained with different rotated grids with m = 3, dynamic cases: 

• Crack paths obtained with different rotated grids with m = 3, quasi-static cases: 



Numerical explanation of grid sensitivity 
• This  type of space  discretization introduces  an anisotropy on the damage state of the  
     node, namely an anisotropy on the energy required to break the bonds along a specific 
     direction:  
      

𝜙 =
𝑏𝑟𝑜𝑘𝑒𝑛 𝑏𝑜𝑛𝑑𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑜𝑛𝑑𝑠
  

Example with m ratio = 3 

Crack path 0 deg 

𝜙0 = 0.38 

15 deg 

𝜙15 = 0.48 

𝒙𝑖 
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• The directions of minimum energy required to break the bonds along a specific direction 
      match the directions of the bonds:  
      

Example with m ratio = 3 

Numerical explanation of grid sensitivity 
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• When the m ratio increases both the number of the minimum energy directions increases  
     and the gap energy between them and the other directions reduces:  

Numerical explanation of grid sensitivity 

Regions in which 
the bond directions 

remain «rare» 

m = 3 m = 5 

m = 8 m = 20 



• With reference to the worst case of grid rotated of 10 degree, it is possible to see  as an 
      increase of m ratio from 3 to 6-7 is enough to eliminate the dependence of crack 
      propagation on grid orientation: 
        

Addressing grid sensitivity in peridynamics 
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• Application of the 1st level of AGRS when the grid is rotated of 10°, the horizon is kept 
constant: 

- Initial Grid : 15,600 nodes 
                         Δx = 2 mm 
                         m = 3 

- Refined region:  Δx = 1 mm                         
                                m = 6 

Addressing grid sensitivity with AGRS 
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Addressing grid sensitivity with AGRS 

• Application of the 2nd  level of AGRS when the grid is rotated of 10°, the horizon shrinks: 

- Initial Grid : 15,600 nodes 
                         Δx = 2 mm 
                         m = 3 
- Refined region:  Δx = 0.5 mm                         
                                m = 6 

- Uniform Refined region:  Δx = 0.5 mm                         
                                                m = 6 

CPU time: 16.09 hour CPU time: 3.52 hour 
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• Setup experiment: 

-    Material 18Ni1900:     E = 190 GPa, 
                                             ρ = 8000 kg/m3 
                                            G0 = 22170 J/m2 

 
-    Simulation :    ttot= 52 μs (Δtmin=20 ns) 
 
-    Initial Grid :   5,000 nodes 
                             Δx = 2 mm 
                             δ = 6 mm  
 
-    Energy Trigger :     W ≥ 0.7 Wmax 

 
- Damage Trigger :   Δϕ ≥ 0 
 
- δ-convergence  (m=3)  

 

Kalthoff J (2000) Modes of dynamic shear failure in solids. Int J Frac 101:1–31 
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Uniform coarse grid ( Δx = 2mm) Uniform refined grid ( Δx = 0.5mm) 

Adaptive grid with 2nd level of refinement  
( Δx0 = 2mm, Δx2 = 0.5mm) 

Adaptive model is able to capture  
the right angle of approximately 70°  



3D Adaptive grid refinement/scaling 

• Crack branching of pre-cracked glass plate under traction, the 1st level of AGRS is 
applied in a 3D model: 

Morphology 
 observed 

expermentally  
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Activities related to my Ph.D 
• Optimization of the pre-existent Matlab codes in the context of dynamic 

simulations with tools such as MEX files: 

16,000 nodes 120,000 nodes 

≈ 9 hours ≈ 5 hours 

 
• Implementation of codes to import a general 3D mesh in Matlab environment 
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Conclusion 

‒ Development of a robust algorithm to implement AGRS on peridynamics 
through the introduction of a trigger based on damage state of the nodes 
 

‒ Development of both 2D/3D codes to implement AGRS with Matlab  
 

‒ Optimization of the pre-existent Matlab codes in the context of dynamic 
simulations 

 

‒ Comparison of different peridynamic formulations (Scaling and Dual-horizon) 
by means of both static and dynamic analysis 
 

‒ Addressing dependence of crack propagation on grid orientation 
 

‒ Validation of the numerical results obtained with other methods/experimental 
results 
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