

Dipartimento di Ingegneria Industriale Via Venezia 1, 35131 Padova

PhD Course in Space Sciences, Technologies and Measurements Sciences and Technologies for Aeronautics and Satellite Applications (STASA) XXIX CICLO

Adaptive grid refinement and scaling techniques applied to peridynamics

Supervisor: prof. Ugo Galvanetto **Co-supervisor:** ing. Mirco Zaccariotto

Doctoral student: Daniele Dipasquale

By J.A. Levine et al.

Email addresses: daniele.dipasquale@studenti.unipd.it/ da_iele@yahoo.it

Page 1 of 25

Contents

- Overview of the bond-based peridynamic theory and its numerical implementation
 - Fundamentals
 - Scaling and dual-horizon concept
 - Numerical discretization with the meshfree method
- Adaptive Grid Refinement and Scaling algorithm (AGRS)
 - Triggers based on the energy and damage
 - Working principle of AGRS
- Activities carried out during the doctoral period
 - Static tests of refinement/scaling
 - Addressing grid sensitivity in regular grids
 - Benchmark problems
- Conclusion

Equation of motion

• For a given body R_0 , the equation of motion of an infinitesimal particle of material is defined by means of the following expression:

$$\rho \ddot{u}(x_{i},t) = \nabla[\sigma] + b(x_{i},t)$$

$$\rho \ddot{u}(x_{i},t) = \int_{H_{x_{i}}} f(u(x_{j},t) - u(x_{i},t), x_{j} - x_{i}) dV_{j} + b(x_{i},t)$$

$$H_{x_{i}} = \{x_{j} \in R_{0} : ||x_{j} - x_{i}|| \leq \delta\} \longrightarrow \text{HORIZON}$$

$$f(\eta,\xi) = f(\eta,\xi) \frac{\xi + \eta}{||\xi + \eta||} \longrightarrow \text{PAIRWISE FORCE FUNCTION}$$

$$H_{x_{i}} = \{x_{j} \in R_{0} : ||x_{j} - x_{i}|| \leq \delta\}$$

Images by W. Liu and J.W. Honget

- $u \rightarrow$ displacement vector field
- $\rho \rightarrow mass \ density$
- b
 ightarrow body force density
- $\xi = x_i x_i \rightarrow$ initial relative position
- $\boldsymbol{\eta} = \boldsymbol{u}_i \boldsymbol{u}_i \Rightarrow$ relative displacement

Constitutive law

• A brittle elastic material is modeled adopting the constitutive law called PMB (**Prototype Microelastic Brittle**). The scalar pairwise force function takes the form:

G₀ := Fracture energy

Damage definition

 It is possible to define a non-ambiguous state of material damage at every point x_i of the body as:

Images by ing. M. Duzzi

Some remarks about the numerical discretization

• Mesh-free method with a uniform structured grid and the Gauss quadrature mid-point space integration solved through the Velocity-Verlet explicit scheme:

AGRS

 The adaptive refinement and scaling allows to reduce in automatic mode (by means of a trigger) both the grid spacing and the horizon only in the regions of interest, as in the proximity of the crack tips during their propagation :

• A 2D static elastic linear problem is addressed through the comparison of the numerical peridynamic solution with the analytical solution of classic theory of mechanics:

$$u_X = (X, Y = 0) = \frac{p}{E}X$$
$$u_y = (X = 0, Y) = -v\frac{p}{E}Y$$

• Example of 2nd level of refinement and scaling applied:

• The PD solution between Scaling and Scaling & Dual-horizon formulation are compared for the 1st level of refinement/scaling:

• The PD solution between Scaling and Scaling & Dual-horizon formulation are compared for the 3rd level of refinement/scaling:

• The comparison between the solutions obtained by applying different levels of refinement/scaling highlights that higher levels of refinement do not affect the result:

• The convergence study on *m* ratio shows as the rate of convergence of the refined region is higher than the coarse one:

• Problem of a 2D pre-cracked square plate subjected to a traction load:

- The grid is rotated with rispect to the direction of pre-crack line
- Quasi-Static and Dynamic analysis

• Waves propagation regarding the dynamic case of the grid rotated of 10° with m = 3:

CISAS 2016, Padova

• Crack paths obtained with different rotated grids with m = 3, dynamic cases:

• Crack paths obtained with different rotated grids with m = 3, quasi-static cases:

Numerical explanation of grid sensitivity

• This type of space discretization introduces an anisotropy on the damage state of the node, namely an anisotropy on the energy required to break the bonds along a specific direction:

Numerical explanation of grid sensitivity

• The directions of minimum energy required to break the bonds along a specific direction match the directions of the bonds:

Numerical explanation of grid sensitivity

• When the *m* ratio increases both the number of the minimum energy directions increases and the gap energy between them and the other directions reduces:

 With reference to the worst case of grid rotated of 10 degree, it is possible to see as an increase of *m* ratio from 3 to 6-7 is enough to eliminate the dependence of crack propagation on grid orientation:

Addressing grid sensitivity with AGRS

Application of the 1st level of AGRS when the grid is rotated of 10°, the horizon is kept constant:

CISAS 2016, Padova

Addressing grid sensitivity with AGRS

• Application of the 2nd level of AGRS when the grid is rotated of 10°, the **horizon shrinks**:

CISAS 2016, Padova

Benchmark problem: Kalthoff-Winkler's experiment

- Setup experiment:
 - Material 18Ni1900: $E = 190 \ GPa$, $\rho = 8000 \ kg/m^3$ $G_0 = 22170 \ J/m^2$
 - Simulation : $t_{tot} = 52 \ \mu s \ (\Delta t_{min} = 20 \ ns)$
 - Initial Grid : 5,000 nodes $\Delta x = 2 mm$ $\delta = 6 mm$
 - Energy Trigger : $W \ge 0.7 W_{max}$
 - **Damage Trigger** : $\Delta \phi \ge 0$
 - δ -convergence (*m*=3)

Kalthoff J (2000) Modes of dynamic shear failure in solids. Int J Frac 101:1–31

Benchmark problem: Kalthoff-Winkler's experiment

X-Axis [m]

the right angle of approximately 70°

3D Adaptive grid refinement/scaling

• Crack branching of pre-cracked glass plate under traction, the 1st level of AGRS is applied in a 3D model:

Activities related to my Ph.D

 Optimization of the pre-existent Matlab codes in the context of dynamic simulations with tools such as <u>MEX files</u>:

Implementation of codes to import a general 3D mesh in Matlab environment

Publications

Dipasquale D., Zaccariotto M. and Galvanetto U. (2014) *Crack propagation with adaptive grid refinement in 2D peridynamics*. International Journal of Fracture, Vol 190, Issue (1), pp 1-22.

Dipasquale D., Sarego G., Zaccariotto M., Galvanetto U. (2014) *Peridynamics with adaptive grid refinement*. Proceeding of the 11th World Congress on Computational Mechanics (WCCM), Spain

Dipasquale D., Zaccariotto M., Sarego G., Duzzi M., Galvanetto U. (2014) *Peridynamics computations with variable grid size*. Proceeding of the 27th Nordic Seminar on Computational Mechanics (NSCM-27), Sweden

Galvanetto U., Zaccariotto M., **Dipasquale D.**, Sarego G., Duzzi M. (2014), *Grid refinement in peridynamic computational applications*. Contribution of International CAE Conference, Italy.

Dipasquale D., Zaccariotto M., Duzzi M., Galvanetto U. (2014), Sarego G., *Dynamic and static simulations* with peridynamic approach using finite element analysis. Poster presented at International CAE Conference

Duzzi M., Zaccariotto M., **Dipasquale D.**, Galvanetto U. (2014), *A Concurrent Multiscale Model to Predict Crack Propagation in Nanocomposite Materials with the Peridynamic Theory*. Poster will be presented at International NanotechItaly2014 Conference, Italy

Dipasquale D., Sarego G., Zaccariotto M., Galvanetto U. (2015), Dependence of crack paths on the orientation of regular peridynamic grids, Eng. Fract. Mech., Vol. 160, pp. 248-263

Galvanetto U., Zaccariotto M., **Dipasquale D.**, Sarego G. (2015), *Enhanced 2D lamina formulation for composite materials, simulation with a peridynamics approach*, Abstract In: International Conference on Advances in Composite Materials and Structures, Book of Abstracts, pp. 60-61, Instambul, Turkey, 13-15 April 2015

Publications

Dipasquale D., Sarego G., Shojaei A., Zaccariotto M., Galvanetto U., (2015) *Addresing grid sensitivity in Peridynamics: an adaptive refinement approach*. Abstract In: International Conference on Computational Modelling of Fracture and Failure, pp. 248-249, Cachan , France, 3-5 June

Zaccariotto M., Sarego G., **Dipasquale D.**, Galvanetto U. (2015), *Remarks on constitutive laws and influence functions used in the Peridynamic theory*. Abstract In: International Conference on Computational Modelling of Fracture and Failure, pp. 248-249, Cachan, France, 3-5 June

Zaccariotto M., Sarego G., **Dipasquale D.,** Shojaei A., Mudric T., Duzzi M., Galvanetto U. (2015), *Discontinuos mechanical problems studied with a peridynamics-based approach*, Proceeding of the 23rd Conference of the Italian Association of Aeronautics and Astronautics (AIDAA-23), pp. (19), Turin

Zaccariotto M., Sarego G., **Dipasquale D.**, Galvanetto U. (2015), Alternative thin plate formulation using a peridynamic approach. Contribution In: SPB 2015 International Conference on Shells, Plates and Beams, pp. 55-56, Bologna

Zaccariotto M., Sarego G., **Dipasquale D.**, Galvanetto U. (2015), Strategies for fatigue damage modeling with peridynamics. Contribution In: Book of Abstracts of the 8th International Congress of Croatian Society of Mechanics, Croatia

Dipasquale D., Oterkus E., Sarego G., Zaccariotto M., Galvanetto U. (2016), *Refinement and scaling effects on peridynamic numerical solutions*, Proceeding to be presented In: ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona (USA), 11-17 November 2016.

Mudric T., Zaccariotto M., **Dipasquale D.**, Galvanetto U. (2016) *How to use FEM codes to solve 3D crack propagation problems with Peridynamics*, submitted in the Aerotecnica, missili e spazio.

Conferences

- Participation at 11th World Congress on Computational Mechanics, Barcelona (20-25/07/2014)
- Participation at International CAE Conference, Pacengo del Garda (27-28/10/2014)
- Participation at 4th International Conference on Computational Modeling of Fracture and Failure of Materials and Structures, Paris (02-05/06/2015)
- I will participate in IMECE International Mechanical Engineering Congress & Exposition, Phoenix, Arizona, USA (11-17/11/2016)

Conclusion

- Development of a robust algorithm to implement AGRS on peridynamics through the introduction of a trigger based on damage state of the nodes
- Development of both 2D/3D codes to implement AGRS with Matlab
- Optimization of the pre-existent Matlab codes in the context of dynamic simulations
- Comparison of different peridynamic formulations (Scaling and Dual-horizon) by means of both static and dynamic analysis
- Addressing dependence of crack propagation on grid orientation
- Validation of the numerical results obtained with other methods/experimental results

Dipartimento di Ingegneria Industriale Via Venezia 1, 35131 Padova

THANK YOU FOR YOUR ATTENTION

http://www.aerospacestructuresinpadova.org