Visual odometry and vision system measurements based algorithms for rover navigation

Request of admission to the final exam

Sebastiano CHIODINI Supervisor: Prof. Stefano DEBEI Co-Supervisor: Ing. Marco PERTILE Padova, October 24, 2016

Università degli Studi di Padova

- **1** Background & motivation
- 2 Support to integration of Mars and Moon Terrain Demonstrator
- 3 Global Rover Localization
- 4 Relative Rover Localization
- 5 Visual SLAM techniques for small spacecraft and interplanetary exploration
- 6 Activities related to research group

Space Rovers

1996	2003	3 2011	2020	2020		
Mars Pathfinder	Mars Exploration	Mars Science	ExoMars 2020	Mars2020		
ruumaar	Rover	Laboratory	2020			
2-3 m per sol	100 m per sol	100 m per sol	100 m per sol	more complex tasks		
wheel	wheel	wheel	wheel	10313		
encoders	encoders	encoders	encoders	global rover localization		
sun sensor	sun sensor	sun sensor	sun sensor	to make we lotted		
	IMU	IMU	IMU	terrain relative navigation		
	VO for slip check	VO for slip check and every step	VO for slip check and every step			
		terrain hazards detection	terrain hazards detection			

Space Rovers

1996	2003	3 2011	2018	2020
00000			- And	
Mars	Mars	Mars	ExoMars	Mars2020
Pathfinder	Exploration Rover	Science Laboratory	2018	
2-3 m per sol	100 m per sol	100 m per sol	100 m per sol	more complex tasks
wheel	wheel	wheel	wheel	
encoders	encoders	encoders	encoders	global rover localization
sun sensor	sun sensor	sun sensor	sun sensor	A sume instantia su
	IMU	IMU	IMU	terrain relative navigation
	VO for slip	VO for slip	VO for slip	
	check	check and every step	check and every step	
		terrain hazards detection	terrain hazards detection	

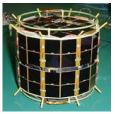
Small bodies exploration

Philae lander

- Payload of ESA's Rosetta spacecraft (2014)
- Designed to land on Comet 67P/Churyumov-Gerasimenko

Nanorover

- Designed by NASA-JPL for Hayabusa mission (2000)
- Project cancelled


PROP-F

- Payload for Phobos 2 Soviet mission (1988)
- Mission failed

MINERVA Payload of JAXA's Hayabusa mission (2003)

Deployment failed

MASCOT

- Payload of JAXA's Hayabusa
 2
- Developed by DLR
- Deployment 2019

Background & motivation

- The robot need to know where it is, to go from A to B
- Navigation without hitting obstacles
- Detection of goal location
- With wich accuracy and reliability do we reach the goal?
- Represent the map for the robot and the position of the robot in the map

Spirit Rover Traverse (Sol 373)

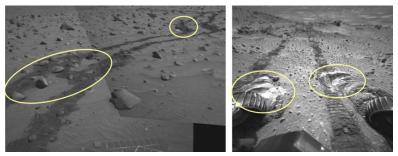
OSU Mapping and GIS Laboratory

Background & motivation

Global localization

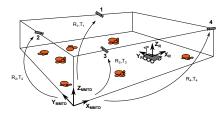
- The robot is not told its initial position
- Its position must be estimated from scratch

Position Tracking


- A robot knows its initial position and "only" has to accommodate small erros in its odometry as it moves
- How to localize?
 - Localization based on external sensors, landmarks
 - Odometry
 - Map Based Localization (without external sensors or artificial landmarks. Just use robot onboard sensors)

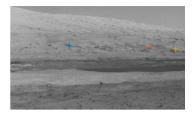
Background & motivation

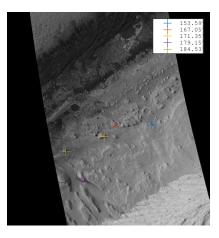
- Advanced space missions require increased autonomy
- No GPS signal on Mars and other small solar system bodies
- Inertial navigation sensors exhibit unacceptable drifts
- Wheel odometry has wide uncertainty due to slippage of wheels on a natural, often sandy or slippery, surface


Request of admission to the final exam

Collaboration with ALTEC

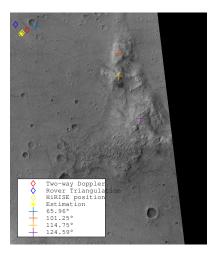
- ExoMars 2020 rover operations will be managed by the Rover Operation Control Center (ROCC), located in ALTEC
- Support to the integration of the Mars Moon and Terrain Demonstrator (ALTEC)
- Global localization studies for operational analysis of ExoMars 2020 rover
- Planetary localization studies for operational analysis of robotic mission (e.g. ExoMars), initialization and revision of path estimation onboard rovers (ALTEC)

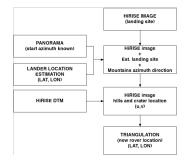




Request of admission to the final exam

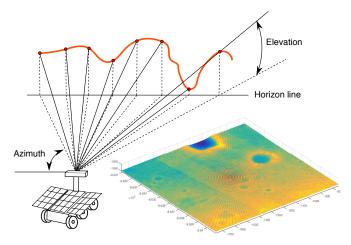
Localization using HiRISE images CISAS





Request of admission to the final exam

9 of 20



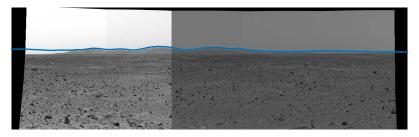
Landing Site	Loc. Error	
Spirit	55.55 [m]	
Opportunity	546.35 [m]	
Curiosity	61.78 [m]	

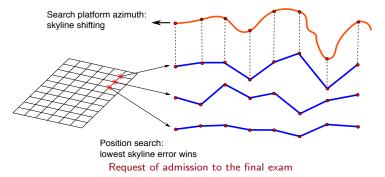
Localization using HiRISE DEM

 This algorithm attempts to estimate the position of a rover with a Digital Elevation Model (DEM) and a panoramic image through an exhaustive search

CIS

Request of admission to the final exam

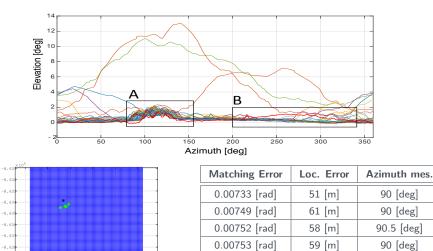

UNIVERSIT?


DI PADOVA

Localization using HiRISE DEM

Università degli Studi di Padova

12 of 20


Localization using HiRISE DEM

W

-8.64

-1600

x [m]

CIS

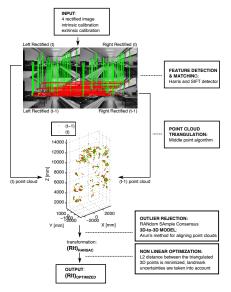
68 [m]

Request of admission to the final exam

0.00759 [rad]

Platform azimuth 91 [deg]

13 of 20


89.5 [deg]

UNIVERSITÀ

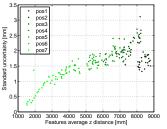
DEGLI STUDI DI PADOVA

Stereo Visual Odometry

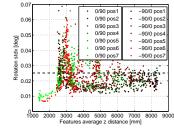
Stereo camera pose optimization, cost function *E*_n

$$\mathbf{e}_{i} = {}^{P_{1}}\mathbf{X}_{i} - {}^{P_{1}}_{P_{2}}\mathbf{R}^{P_{2}}\mathbf{X}_{i} - {}^{P_{1}}\mathbf{t}_{P_{2},P_{1}}$$
$$\mathbf{C}_{i} = {}^{P_{1}}\mathbf{C}_{i} + {}^{P_{1}}_{P_{2}}\mathbf{R}^{P_{2}}\mathbf{C}_{i}{}^{P_{1}}_{P_{2}}\mathbf{R}^{\top}$$
$$E_{nl} = \sum_{i=1}^{n} (\mathbf{e}_{i}^{\top}\mathbf{C}_{i}^{-1}\mathbf{e}_{i})$$

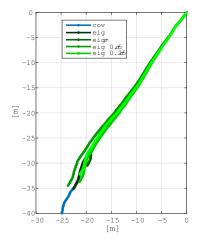
- P¹X_i and P²X_i 3D coordinates of landmark *i* at time *t* − 1 and *t* (P¹_{P2}R|P¹t_{P2,P1}) pose
 - transformationn
- ^{P1}C_i and ^{P2}C_i 3x3 covariance matrices of a landmark


Request of admission to the final exam

14 of 20


Stereo Visual Odometry

- Experimental analysis of how landmark distributions in a scene, as observed by a stereo-camera, affect Visual Odometry measurement performances
- Translations. The step uncertainty is greater when the features are located far away from the camera.


 Rotations. The step uncertainty does not grow with the distance from the stereo-camera center.

Visual Odometry a comparison

Università degli Studi di Padova

- Error 3Dto3D Non linear optimization 2.04%
- Error MICP-VO 0.86% ICP Stereo Visual Odometry (Jiang et al. 2014)
- Error P3P RANSAC 2.60% Monocular visual odometry in urban environments using an omnidirectional camera (Tardif et al. 2008)
- Error LIBVISO2 4.14% Iterated Sigma Point Kalman Filter in combination with a RANSAC-based outlier rejection (Kitt et al. 2010)

JVSRP Program

- Jet Propulsion Laboratory Visiting Research Student Program (JVSRP)
- Robotic Section Robotic Mobility (347F) Group supervised by Robert Reid and Issa Nesnas
- Collaboration to develop the navigation system of Hedgehog, a hybrid rover/spacecraft system designed to tumble and hop on asteroids, comets and other small bodies

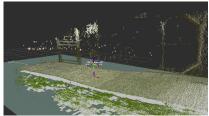
Jet Propulsion Laboratory

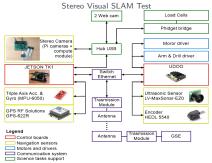
California Institute of Technology

Image credit: NASA/JPL-Caltech/Stanford

- During this Ph.D. work two different global localization framework has been studied and analysed, for two different mission scenario.
- These localization frameworks foreseen a collaborative approach between an orbiter and a daughter rover.
- In the planetary exploration case we have investigated an approach that exploit a Digital Elevation Model, obtained by orbiter images, with surface image captured by the rover. Stereo Visual Odometry algorithms have been investigated for local traverse.
- In the small body exploration case we have studied a collaborative Visual SLAM algorithm between the orbiter and the deployed daughter.

Field Robotics Testbed




Università degli Studi di Padova

Mechanical configuration

- Planetary like rover designed by a team of students
- Testbed for soil and rocks extraction and sampling
- Testbed for autonomous navigation in unstructured environment (sensors and algorithms)

Rover Sensors

Pubblications

- Chiodini, S., Colombatti, G., Pertile, M., Debei, S. Numerical study of lander effects on DREAMS scientific package measurements (2014) 2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings, pp. 433-438.
- Pertile, M., Chiodini, S., Debei, S. Comparison of visual odometry systems suitable for planetary exploration (2014) 2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 -Proceedings, pp. 232-237.
- Colombatti, G., Chiodini, S., Friso, E., Aboudan, A., Bettanini, C., Debei, S., Esposito, F. MarsTEM: The temperature sensor of the DREAMS package onboard ExoMars 2016 (2014) 2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings, pp. 249-254.
- Pertile M., Mazzucato M., Bottaro L., , Chiodini S., Debei S. and Lorenzini E. Uncertainty evaluation of a vision system for pose measurement of a spacecraft with fiducial markers (2015) 2nd IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2015 Proceedings, pp. 283-288.
- Colombatti G., Chiodini S., Friso E., Aboudan A., Bettanini C., Poli M., Debei S., Esposito F., Molfese C., Schipani P., Marty L., Mugnuolo R., Pirrotta S. and Marchetti E. MarsTEM field test in Mars analog environment (2015) 2nd IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2015 Proceedings, pp. 585-590.
- Chiodini S., Colombatti G., Friso E., Pertile M. and Debei, S. Multiphysics modelling of MarsTEM shield (2015), 2nd IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2015 -Proceedings 271–276.
- Pertile M., Chiodini S., Debei S. and Lorenzini E. Uncertainty comparison of three visual odometry systems in different operative conditions (January 2016), Measurement 78.
- Chiodini S., Pertile M. and Debei S. Visual odometry system performance for different landmark average distances IEEE Metrology for Aerospace (MetroAeroSpace), 2016.
- Pertile M., Chiodini S., Giubilato R. and Debei S. (2016, June). Effect of rolling shutter on visual odometry systems suitable for planetary exploration. In Metrology for Aerospace (MetroAeroSpace), 2016 IEEE (pp. 598-603).