Primo: An Ultra-light Launch Vehicle For Nano & Microsatellites

Giovanni Pandolfi MScEng student

1° Symposium on Space Educational Activities Padova 9-12 December 2015

The microsatellite problem

1.

the second

Requirements				
PL mass	50 kg			
Nominal orbit	700 km polar			
Launch rate	20 lc/year			
Stage number	2			
Propulsion tech.	Hybrid			

Flight constraints				
Max longitudinal acceleration 65 m/s ²				
Max dynamic pressure	35 kPa			
Take Off T/W	1.4			

- Low development, production, operations and disposal costs
- Low production, operations and disposal environmental impact

Requirements

ΔV contributions	Value [km/s]
Orbital Velocity (200 km)	7.79
Hohm. Trans. 200-700 km	0.28
Gravity loss	1.3
Drag loss	0.2
Steering losses	0.05
Performance margin (1%)	0.1
Total	9.72

Second Stage: Single

 \bigcirc

First Stage: EptaWeb

Engines configuration

Feature	ρ	T _b	€/kg	Ox power	Self-p	Storable	Ignition	Isp	Cat	TNT	Avail.
LOX	1141	90.19	< 0.2	1	No	No	Yes	370	No	0	High
N ₂ O	744	P dep.	< 5	0.36	Yes part.	Yes	Yes	320	Yes	Nd	Medium
H ₂ O ₂	1440	423	< 1.7	0.94	No	Yes	No	320	Yes	1	Low

1 st stage lsp	270 s
2 nd stage lsp	310 s

Liquid oxidizers

1 st stage structural mass fraction	0.1
2 nd stage structural mass fraction	0.1

1 st stage ΔV	4.025 km/s
2 nd stage ΔV	5.695 km/s

Mass & ΔV fraction

GLOW	6360 kg
1 st stage initial mass (w/o PL)	5530 kg
1 st stage propellant mass	4975 kg
1 st stage structural mass	555 kg
2 nd stage initial mass (w/o PL)	790 kg
2 nd stage propellant mass	710 kg
2 nd stage structural mass	80 kg
OF ratio	2.7

Mass budget

1 st stage total initial thrust	87.5 kN	
1 st stage total initial thrust	12.5 kN	
2 nd stage initial thrust	12.5 kN	
1 st stage total final thrust	87.5 kN	
2 nd stage final thrust	8.35 kN	
Motor throttability	40%	

Fuel grain mass	190 kg
1 st stage burning time	184 s
2 nd stage burning time	211 s
Oxidizer mass flow rate	2.9 kg/s
Combustion chamber length	1.6 m
Combustion chamber diameter	0.4 m

Harlock motor

Pressure-feed	 Higher tank mass Pressurant needed (tanks, pipeline) Low control capability 	0.12	
Turbo-pump	 Liquid fuel needed (tanks, pipeline) Higher oxidizer mass Low control capability High development time and cost 	0.08	
Electric-pump	 Lower tank mass High control capability Low development time and cost 	0 0	t _b = 120 s, m _p = 3000 kg, p _c = 3 MPa 10 20 30 40 p₀ (MPa)

Feed system

Total mass for different batteries vs Burning time. $P_t k= 10 \text{ bar}, m_d \text{ot}= 20 \text{kg/s}$ Total mass for different batteries vs tank pressure Li-Po Li-Po Li-Ion Li-Ion Total mass [kg] 001 Total mass [kg] Total mass [kg] 001 201 Li-S Li-S Tank pressure [bar] Burning time [s]

Electric-pump

Electric-pump: Rutherford LRE

Cryo-composite tanks

Fairing	10 kg
PL adapter	2 – 10 kg
Avionics & cabling	10 kg
PW system	2 kg
Pressurization system	2 kg
Tank	20 kg

Electric-pump	6 kg
Feed-line	5 kg
Motor	15 kg
TVC	2 kg
Misc.	6 kg
Total inert mass	80 kg

Mass breakdown: 2nd stage

Interstage & separation sys.	30 kg
PL/stage recovery sys.	30 kg
PW system	10 kg
Avionics & cabling	20 kg
Pressurization system	10 kg
Tank	120 kg

Electric-pump	40 kg
Feed-line	40 kg
Motors	105 kg
TVC	30 kg
Misc.	135 kg
Total inert mass	555 kg

Mass breakdown: 1st stage

Flight simulation

Payload

Primo configuration

1.3 m

Max diameter

13 m Height

6.4 T

87.5 kN

Lift-Off Thrust

20 Launches per year 2 M€

Price

- Mass & power budget iterations
- Accurate study on cryo-composite tanks
- Accurate study on ablative composites CC
- Accurate study on TVC and control systems
- 6 DOF flight simulator
- Trajectory optimizer

References

- Casalino, L., & Pastrone, D. (2010). Optimization of a hybrid rocket upper stage with electric pump feed system.
 AIAA.
- Costa, F. S., & Vieira, R. (2010). *Preliminary analysis of hybrid rockets for launching nanosat into LEO*. Journal of the Brazilian Society of Mechanical Sciences and Engineering.
- Costa, R. F. (2010). Preliminary analysis of hybrid rockets for launching nanosat into LEO. *Journal of the Brazilian* Society Of Mechanical Sciences and Engineering.
- Galfetti, L., Merotto, L., Boiocchi, M., Maggi, F., & DeLuca, L. (2011). Ballistic and rheological characterization of parafin-based fuels for hybrid rocket propulsion. *AIAA: Joint propulsion conference*.
- Galfetti, L., Merotto, L., Boiocchi, M., Maggi, F., & DeLuca, L. (2013). Experimental investigation of paraffin-based fuels for hybrid rocket propulsion. *EUCASS: Progress in propulsion physics*.
- Gaspar, D. (2014). A tool for preliminary design of rockets. Técnico Lisboa.
- Hammond, W. (1999). Space Transportation: a system approach to analysis and design. AIAA.
- Karabeyoglu, A. (2011). High performance hybrid upper stage motor. AIAA.

References

- Karabeyoglu, A. (2012). 22-inch hybrid rocket test media briefing. Space Propulsion Group Inc.
- Karabeyoglu, A. (2012). Hybrid rocket propulsion design issues. Department of Aeronautics and Astronautics -Stanford University.
- Karabeyoglu, A. (2012). *Hybrid rocket propulsion with liquefying fuels*. Department of Aeronautics and Astronautics Stanford University.
- Karabeyoglu, A., Cantwell, B., & Altman, D. (2001). Development and testing of paraffin-based hybrid rocket fuels.
 AIAA.
- Karabeyoglu, A., Stevens, J., Geyzel, D., & Cantwell, B. (2011). *High Performance Hybrid Upper Stage Motor*. AIAA.
- Ley, W. (2008). *Handbook of Space Technology*. Wiley.
- Merotto, L., Boiocchi, M., Mazzetti, A., Maggi, F., Galfetti, L., & DeLuca, L. (2011). Characterization of a family of paraffin-based solid fuels. EUCASS.
- Muss, J., Chakroborty, S., & Leyva, I. (2005). *Development of the Scorpius LOX/Kerosene*.

giovanni.pandolfi@leafspace.eu

www.leafspace.eu

