Modeling a New Concept of Tether Deployer with Retrievable Capability for Space Applications

> 1st Symposium on Space Educational Activities Padova, December 11th, 2015

Gilberto Grassi^{*}, Riccardo Mantellato[§] ^{*} MSc Aerospace Engineering [§] Department of Industrial Engineering University of Padova

Università degli Studi di Padova

- **1.** Introduction
- 2. Proposed concept
- **3.** Models & control
- 4. Simulations
- **5.** Conclusions

Introduction

1st Symposium on Space Educational Activities Padova, December 11th, 2015

What did we want to do?

- 1. Model a tether deployer with retrievable capability
- 2. Simple & reliable
- 3. Compact & light

Tether heritage (1/2)

1992 – TSS-1 – 20 km tether

- 670 kg satellite + tether
- 4800 kg pallet & support

Tether heritage (2/2)

1994 – SEDS-II – 20 km tether

- 33 kg tip mass + tether
- 10 kg deployer hardware

Proposed concept

1st Symposium on Space Educational Activities Padova, December 11th, 2015

Proposed concept (1/2)

Proposed concept (1/2)

Proposed concept (1/2)

How to control tether motion during deployment?

Low-Inertia (SEDS-like)... ... Inductive Brake (TSS-like)

How to control tether motion during deployment?

Low-Inertia (SEDS-like)... ... Inductive Brake (TSS-like)

How to control tether motion during deployment?

Low-Inertia (SEDS-like)... ... Inductive Brake (TSS-like)

Models & control

1st Symposium on Space Educational Activities Padova, December 11th, 2015

Models (1/2)

- Università - degli Studi - di Padova

Control (1/2)

Reference trajectory optimization – Nelder-Mead algorithm

Reference trajectories feed-forward – $I_{ref}(t)$, $\dot{I}_{ref}(t)$

Equations (deployment)

$$\mathsf{LI} \begin{cases} \ddot{l}(m+\rho l) + \frac{\rho}{2}\dot{l}^{2} + l\left(m + \frac{\rho}{2}l\right)\left[\left(\omega + \dot{\theta}\right)^{2} + 3\omega\cos^{2}(\theta)\right] = -4\frac{\lambda p}{d}x - T_{0} \\ \ddot{\theta} + 3\frac{2m+\rho l}{3m+\rho l}\left(\omega + \dot{\theta}\right)\frac{\dot{l}}{l} + 3\omega^{2}\sin(\theta)\cos(\theta) = 0 \end{cases} \\ J\frac{\partial i}{\partial t} + Ri = V - k_{v}\dot{\psi} \\ \ddot{\psi}\left[\frac{I}{r} + r(m+\rho r\psi)\right] + \dot{\psi}\left(\frac{b}{r} + \frac{\rho}{2}r^{2}\dot{\psi}\right) - \psi r\left(m + \frac{\rho}{2}r\psi\right)\left[\left(\omega + \dot{\theta}\right)^{2} + \dots \\ \dots + 3\omega^{2}\cos^{2}(\theta)\right] = -\frac{k_{t}}{r}i - T_{0} \\ \ddot{\theta} + 3\frac{2m+\rho\psi r}{3m+\rho\psi r}\left(\omega + \dot{\theta}\right)\frac{\dot{\psi}}{\psi} + 3\omega^{2}\sin(\theta)\cos(\theta) = 0 \end{cases}$$

1st Symposium on Space Educational Activities Padova, December 11th, 2015

Equations (deployment)

Università degli Studi di Padova

$$\begin{split} \mathsf{LI} & \left\{ \begin{array}{l} \ddot{l}(m+\rho l) + \frac{\rho}{2}\dot{l}^{2} + l\left(m + \frac{\rho}{2}l\right) \left[\left(\omega + \dot{\theta}\right)^{2} + 3\omega\cos^{2}(\theta) \right] = -4\frac{\lambda p}{d} \cdot T_{0} \\ & \ddot{\theta} + 3\frac{2m+\rho l}{3m+\rho l} \left(\omega + \dot{\theta}\right) \frac{\dot{l}}{l} + 3\omega^{2}\sin(\theta)\cos(\theta) = 0 \\ & \mathsf{Control} \\ & \mathsf{J}\frac{\partial i}{\partial t} + Ri = \underbrace{V - k_{v}\dot{\psi}}_{friction} \\ & \mathsf{Control} \\ & \mathsf{friction} \\ & \mathsf{friction} \\ & \mathsf{W} \left[\frac{I}{r} + r(m+\rho r\psi) \right] + \dot{\psi} \left(\frac{b}{r} + \frac{\rho}{2}r^{2}\dot{\psi} \right) - \psi r \left(m + \frac{\rho}{2}r\psi\right) \left[\left(\omega + \dot{\theta}\right)^{2} + \dots \right] \\ & \cdots + 3\omega^{2}\cos^{2}(\theta) \right] = -\frac{k_{t}}{r}i \cdot T_{0} \\ & \ddot{\theta} + 3\frac{2m+\rho\psi r}{3m+\rho\psi r} \left(\omega + \dot{\theta}\right) \frac{\dot{\psi}}{\psi} + 3\omega^{2}\sin(\theta)\cos(\theta) = 0 \end{split} \right\}$$

1st Symposium on Space Educational Activities Padova, December 11th, 2015

Equations (deployment)

Università degli Studi di Padova

$$\mathsf{LI} \begin{cases} \ddot{l}(m+\rho l) + \frac{\rho}{2}\dot{l}^{2} + l\left(m + \frac{\rho}{2}l\right) \left[\left(\omega + \dot{\theta}\right)^{2} + 3\omega\cos^{2}(\theta)\right] = -4\frac{\lambda p}{d} \mathbf{x} \cdot T_{0} \\ \ddot{\theta} + 3\frac{2m+\rho l}{3m+\rho l} \left(\omega + \dot{\theta}\right) \frac{\dot{l}}{l} + 3\omega^{2}\sin(\theta)\cos(\theta) = 0 \end{cases}$$

$$\mathsf{IB} \begin{cases} \mathbf{I}_{0}(m+\rho r) = \mathbf{I}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) = -\frac{k}{2}r^{2}\dot{\theta} \\ \mathbf{I}_{0}(m+\rho r) = -\frac{k}{r}i + \frac{1}{r}i \\ \mathbf{I}_{0}(m+\rho r) = -\frac{k}{r}i + \frac{1}{r}i \\ \mathbf{I}_{0}(m+\rho r) = 0 \end{cases}$$

$$\mathsf{IB} \begin{bmatrix} \ddot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) + \dot{l}_{0}(m+\rho r) \\ \mathbf{I}_{0}(m+\rho r) \\ \mathbf{I}_{0}($$

1st Symposium on Space Educational Activities Padova, December 11th, 2015

Simulations

1st Symposium on Space Educational Activities Padova, December 11th, 2015

UNIVERSITÀ

degli Studi di Padova

18 of 24

UNIVERSITÀ

degli Studi di Padova

Results

Università degli Studi di Padova

Simulations results

$l_{\mathrm{goal}}\left(\mathrm{m} ight) ightarrow$	50	100	200
\dot{l}_0 (m/s) \downarrow	LI IB	LI IB	LI IB
0.50	$\bullet \ominus$	$\bullet \ominus$	$\Theta \Theta$
0.75	$\oplus \ominus$	$\bullet \ominus$	$\bullet \ominus$
1.00	\oplus \bullet	$\oplus \ominus$	$\bullet \ominus$
1.50	\oplus \bullet	\oplus \bullet	$\oplus \ominus$
1.75	\oplus \bullet	\oplus \bullet	$\oplus \ominus$
2.00	\oplus \bullet	\oplus \bullet	\oplus \bullet

(
): successful deployments

 (\oplus) : insufficient brake authority control

 (\bigcirc) : insufficient initial velocity

Results

Università degli Studi di Padova

Simulations results

$l_{\mathrm{goal}}\left(\mathbf{m} ight) ightarrow$	50	100	200
\dot{l}_0 (m/s) \downarrow	LI IB	LI IB	LI IB
0.50			$\Theta \Theta$
0.75	\oplus \ominus	$\bullet \ominus$	\bullet \ominus
1.00	\oplus \bullet	\oplus \ominus	\bullet \ominus
1.50	\oplus \bullet	\oplus \bullet	\oplus \ominus
1.75	\oplus \bullet	\oplus \bullet	\oplus \ominus
2.00		\oplus	\oplus

Required higher launch velocity

- (
): successful deployments
- (\oplus) : insufficient brake authority control
- (\bigcirc) : insufficient initial velocity

Results

Università degli Studi di Padova

Simulations results

$l_{\text{goal}}\left(m\right)\rightarrow$	50	100	200	
\dot{l}_0 (m/s) \downarrow	LI IB	LI IB	LI IB	
0.50	Θ	Θ	ΘΘ	
0.75	$\oplus \ominus$	\bullet \ominus	\bullet \ominus	
1.00	\oplus \bullet	\oplus \ominus	\bullet \ominus	
1.50	\oplus \bullet	\oplus \bullet	\oplus \ominus	
1.75	\oplus \bullet	\oplus \bullet	\oplus \ominus	Less con
2.00	$\oplus \bullet$	\oplus \bullet	\oplus \bullet	w.r.t.

Less control authority w.r.t. IB

(
): successful deployments

 (\oplus) : insufficient brake authority control

 (\bigcirc) : insufficient initial velocity

Università degli Studi di Padova

Successful deployment

Deployment example (2/3)

Deployment failure – insufficient launch velocity

Deployment example (3/3)

Deployment failure – insufficient deployer control authority

Conclusions

1st Symposium on Space Educational Activities Padova, December 11th, 2015

Inductive brake

- 1. More control authority
- 2. Less actuators
- 3. Some critical issues during deployment are addressed

Low-inertia

- 1. Easier ground test phase
- **2.** Requires less energy (T_0)
- Higher tolerance of design inaccuracies (less parts in synch. motion)

Inductive brake

- 1. More control authority
- 2. Less actuators
- 3. Some critical issues during deployment are addressed

Low-inertia

- 1. Easier ground test phase
- **2.** Requires less energy (T_0)
- Higher tolerance of design inaccuracies (less parts in synch. motion)

- Questions? -

Extras – YES2

2007 – YES2

- 12 kg endmass + tether
- 24 kg deployment hardware

$$\ddot{l} = -\frac{\rho \dot{l}^2}{2(m+\rho l)} + l\frac{2m+\rho l}{2(m+\rho l)} \left[\left(\omega + \dot{\theta}\right)^2 + 3\omega^2 \cos^2(\theta) \right] - \frac{T}{m+\rho l}$$
$$\ddot{\theta} = -3\frac{2m+\rho l}{3m+\rho l} \left(\omega + \dot{\theta}\right) \frac{\dot{l}}{l} - 3\omega^2 \sin(\theta) \cos(\theta)$$

Extras – motion equations

Extras – system parameters

	Parameter	Value	Unit
	b	$3 \cdot 10^{-6}$	Ns/rad
	d	$9 \cdot 10^{-2}$	m
	e	0	1
	Ι	$17 \cdot 10^{-7}$	$\mathrm{kg}\mathrm{m}^2$
	J	$3.65\cdot10^{-4}$	Н
	k_v	$4.05 \cdot 10^{-3}$	Vs/rad
	k_t	$3.8675 \cdot 10^{-2}$	Nm/A
	p	$3 \cdot 10^{-2}$	m
low inortio	r	$15 \cdot 10^{-2}$	m
LOW-IIIei tia	R	2.98	Ω
	$> T_{0,\mathrm{li}}$	$15 \cdot 10^{-3}$	Ν
	$T_{0,ib}$	$150 \cdot 10^{-3}$	Ν
In durations la males	m	20	kg
Inductive brake	λ	0.5	N/m
	ho	$1.35 \cdot 10^{-3}$	kg/m
	ω	$1.0382 \cdot 10^{-3}$	rad/s

Higher inner friction in IB due to more sliding parts

Extras – deployment scenario

Università degli Studi di Padova

Università | degli Studi | di Padova

θ_0 values chosen in the simulations

$l_{\text{goal}}(\mathbf{m}) \rightarrow \dot{l}_0(\mathbf{m/s}) \downarrow$	50	100	200
0.50	103°	115°	134°
0.75	99°	107°	123°
1.00	96°	101°	114°
1.50	95°	98°	108°
1.75	94.5°	97°	105°
2.00	94°	96°	102°

$$\theta_{0} = \theta_{\text{goal}} - \bar{\theta}t_{\text{end}} \underbrace{\bar{\theta}}_{t_{\text{end}}} = \bar{\theta}\left(\omega, \theta_{\text{goal}}, l_{\text{goal}}, \dot{l}_{0}\right)$$
$$t_{\text{end}} = t_{\text{end}}\left(\dot{l}_{0}, T_{0}, \bar{F}_{\text{friction}}\right)$$

Extras – Nelder-Mead algorithm

Extras – Nelder-Mead algorithm

UNIVERSITÀ

degli Studi di Padova

Extras – abort capability

- Università degli Studi di Padova

Mechanical brake

Extras – models

1st Symposium on Space Educational Activities Padova, December 11th, 2015 X

Extras – models

Università degli Studi di Padova

X

Padova, December 11th, 2015

Extras – applications

Università degli Studi di Padova

What could we do? New docking techniques

Extras – DC motor

Università degli Studi di Padova

