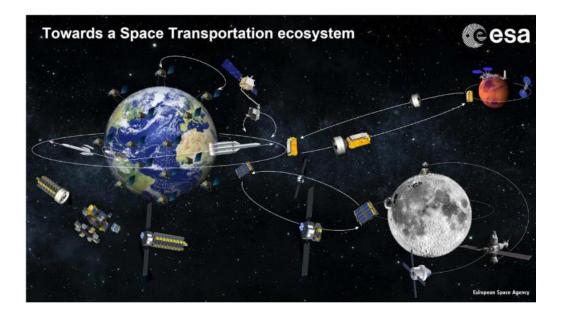


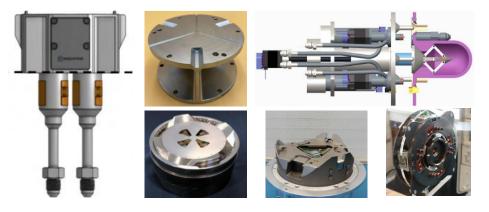
Development of a standard modular docking interface for On Orbit assembly and servicing

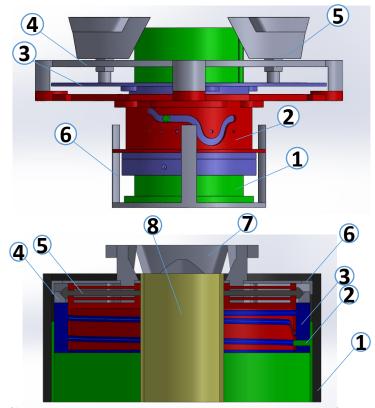
Giuseppe Ventura - 38th Cycle

Supervisor: Prof. Alessandro Francesconi Admission to the third year - 16/09/2024


Space Logistic Ecosystem

Università


degli Studi di Padova


Docking interfaces analysis

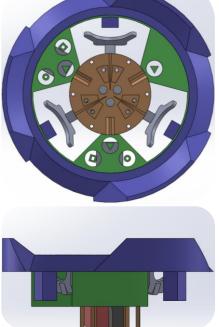
Functional requirements definition

WEIGHT DI [kg]	MENSION [mm]	MAX POWER [W]	ADD-ON	DOCKING TIM [sec]		OMETRIC EATURES	TARGET ORBIT	TEMPERATURE RANGE [°C]
MECHANICAL AXIAL- LATERAL [N]	BENDING		DATA TYPE EXCHANGE	THERMAL POWER EXCHANGE	FUEL TYPE	LEAKAGE [scc/s]	MISALIGNME NT [mm]	MISALIGNMENT [deg]

Interfaces design and prototyping

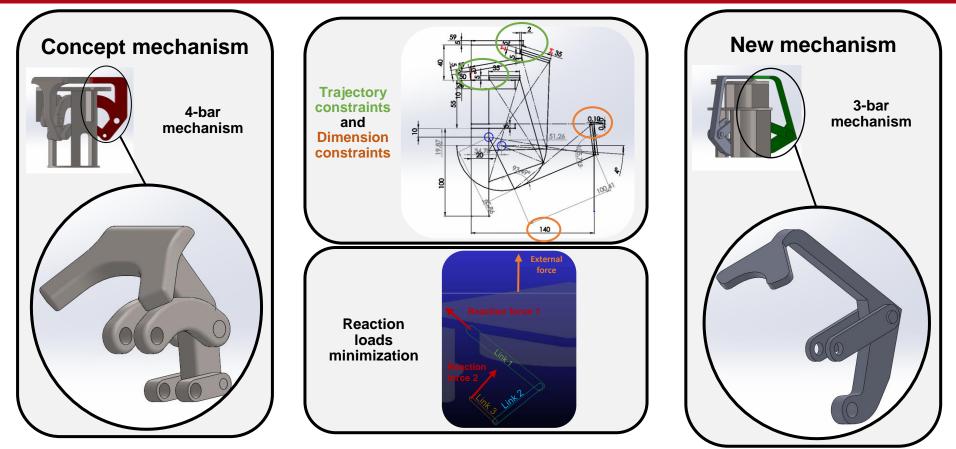
End of the first year: MASI v1.0

MASI : Modular Androgynous Standard Interface



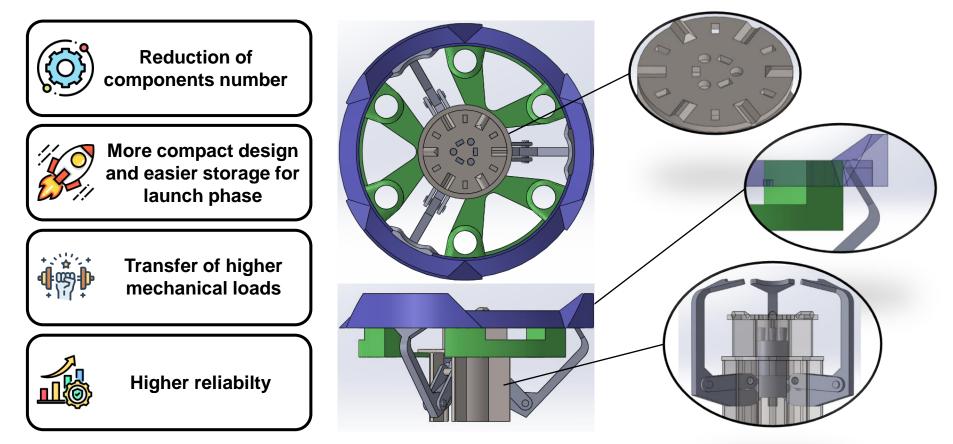
Docking interface

+ Refuelling module



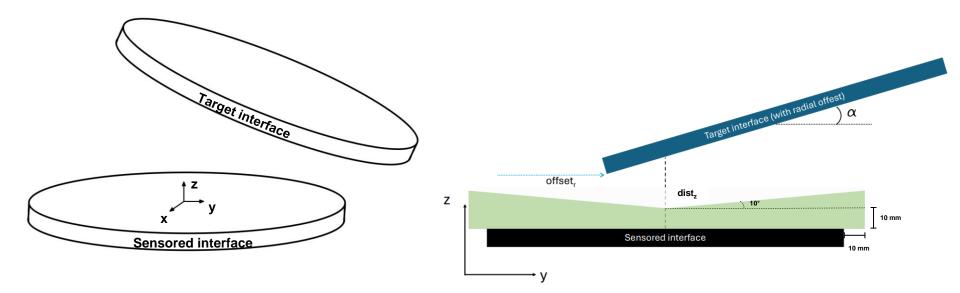
+ Alignment module

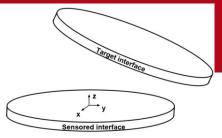
Mechanism optimization



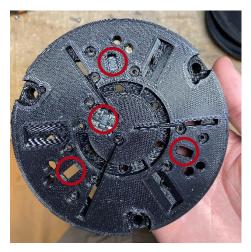
Giuseppe Ventura

Development of a standard modular docking interface for On Orbit assembly and servicing

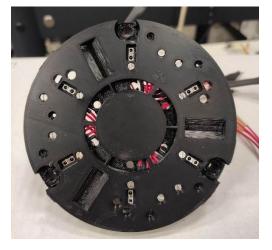




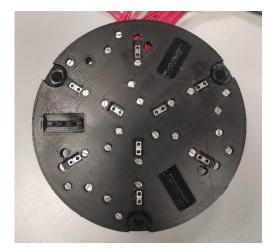
Specification: Ensure feedback on the target interface's position and orientation, triggering the closing mechanism only within the acceptable volume



Attitude estimation subsystem design



First iteration


- X No lateral offset evaluation
- X Low sensor precision and slow acquisition

Second iteration

- X No lateral offset evaluation
- High sensor precision and fast acquisition

Third iteration

- Lateral offset evaluation
- High sensor precision and fast acquisition

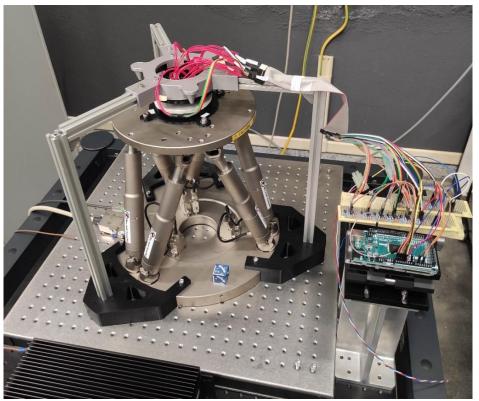
Giuseppe Ventura

Sensor and cover

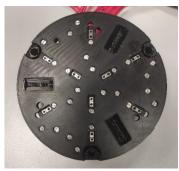
Università

degli Studi di Padova

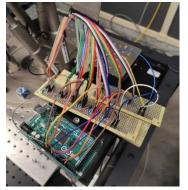
Sensors assembly



Target interface

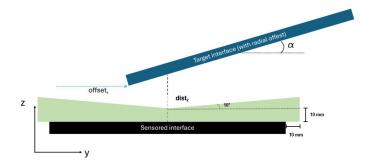


Giuseppe Ventura


Test facility

Sensored interface

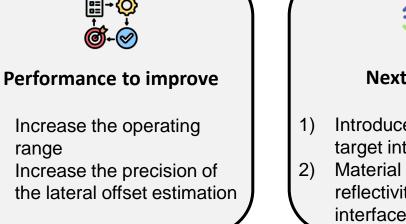
Arduino and power circuit


Attitude estimation subystem performance

	z [mm]	r [mm]	r [deg]	x [deg]	y [deg]			
Range	[0, 12] [-11, 11]		[0, 360]	[-12, 12]	[-12, 12]			
Error	$\sigma =$ 0.5	± 1.5	± 15.0	± 1.0	± 1.0			

1)

2)

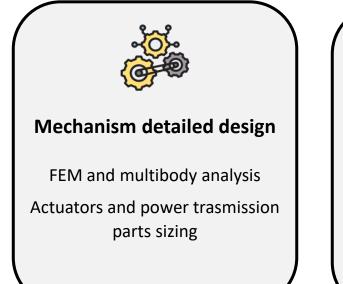


INIVERSITÀ

degli Studi di Padova

Advantages

- 1) No contact required
- 2) No markers required
- 3) It works with both MASI and MICE


Next test steps

- 1) Introduce MASI features on target interface
- Material of more realistic reflectivity for target interface

Giuseppe Ventura

Refuelling system design

Actuators and valves sizing Fluidic system design

Experimental campaign

Validation of virtual simulations Test on fluid exchange subsystem and mechanism operations

WBS						FIRST	YEA	R					S	ECOI	ND Y	EAR			THIRD YEAR										
WBS		% OF TASK	Т	1		T2	1	3	T	4	1	F1	· ·	T2	Τ	T3		T4		T1	Τ	Т	2		тз		Т	14	
NUMBER 1 1.1 1.2 1.3 2 2.1 2.1 2.2 2.3 3 3.1	TASK TITLE	COMPLETE	0	N D	J	FM	A	ΝJ	J	A S	0	N D	J	FM	I A	мJ	J	Α :	6 0	Ν	D	JF	м	Α	м	J	JA	A S	
1	State of art definition																												
1.1	Systems type analyses	100%																											
1.2	Environmental scenarios and constraints definition	100%																											
1.3	Mechanisms and interfaces analysis	100%																											
2	Conceptual design																												
2.1	Functional requirements definition	100%																											
2.2	Mechanisms and interfaces design	70%																											
2.3	Virtual prototyping and simulations	40%																											
3	Physical design																												
3.1	Detailed design, manufacturing and assembly	20%																											
3.2	Experimental campaign	30%																											
4	Writing PhD thesis and reports																												
4.1	Writing reports	50%																											
4.2	Article redaction	30%																											
4.3	Writing PhD thesis	30%																											
	Site scheduling					Uni	versi	tv of	Pado	va					Thal	es Ale	enia S	Spac	e			A	oora	d pei	riod				

Thanks for the attention

Università degli Studi di Padova