

Aerospace Technologies for Earth Monitoring and Observation

Federico Toson - 38th Cycle Supervisor: Prof. Carlo Bettanini

Co-Supervisor: Prof. Giacomo Colombatti

3° year admission - 16/09/2024

UNIVERSITÀ

degli Studi di Padova

International Framework and Objectives

Motivation: Environmental safeguard

State of Art: Ground and satellite technologies for Earth monitoring

Aerospace technologies for Earth observation and pollution monitoring.

Design and Development

Use of previous technologies for remote sensing studied by the research team

Improvement and versatility not only in analysis and monitoring but also in context (area, heights, hosting vehicles)

Multiple subsystems

Rapid prototyping

Autonomous payload

Additive printing

SAT data integration and validation

Federico Toson

Three possible solutions:

- Drones:
 - High ground resolution
 - Limited time window
 - Easy access
 - Defined ground track

• Stratospheric Balloons

- Large area of analysis
- Extended time window on different target area
- Variable ground track (atmospheric wind dependant)

Tethered Balloons

- Extended time window on specific target area
- High ground resolution

Constellation of 130+ CubeSat in SSO

(revisit time of 24h on the field, at 9 am LT)

8 satellites' operative bands (ground res. 3, 2 m):

- Coastal Blue (431 452 nm)
- Blue (465 515 nm)
- Green I (513 549 nm)
- Green (547 583 nm)
- Yellow (600 620 nm)
- Red (650 680 nm)
- Red-Edge (RE) (697 713 nm)
- Near-Infrared (NIR) (845 885 nm)

Imaging unit and sensors

- Basler ace 2 (IMX546 8MP CMOS by Sony)
 - monochromatic camera
 - colour camera
- FLIR Vue Pro R
- Apeman "Space cam"
- Two main optical solutions

	Focal Length	Angle of View	FOV @ 50 m height
Kowa LM35HC	35 mm	13°	12 x12 m
Tuss LYM0814	8 mm	70°	100 x 100 m

- SQM-L (Sky quality meter)
- Air composition sensors
- GPS system

Federico Toson

Previous developments

RAW image in RGB TB filter (475, 550, 850 nm)

Slides credits to Carlo Bettanini

GNDVI computation

Federico Toson

UNIVERSITÀ

degli Studi di Padova

UNIVERSITÀ

degli Studi di Padova

- New 3D structure
- Modular approach
- New field test campaigns
 - Water stress
 - Wine yard diseases
 - Light Pollution
- Stratospheric flights
 - Attitude and Dynamics reconstruction

Università

degli Studi di Padova

Cesa

~

Dipartimento Territorio

ESCUELA DE

TESA

- DAFNAE & TESAF: Crops monitoring study (currently in progress)
- University of Pisa: Stratospheric balloon launches (October 2024)
- University of Chile: Light Pollution research (November 2024)
- Officina Stellare: Sat observation data (2025 TBD)
- ESA Earth Observation office (2025 TBD)

UNIVERSITÀ DI PISA

2//50

		FIRST								TYEAR					OND	YEA	R			THIRD YEAR										
WBS NUMBER	TASK TITLE	% OF TASK COMPLETE	Т	1 Т		Г2	T		T4			T1		T2		Т3		T4		T1		T2		2			1	r4		
			ON	D	J	FN	A	M	JJ	JA	S	N	D	JF	Μ.	A M	J	J	A S	0	N	DJ	F	M	A M	J	J	AS		
1	Bibliographic Research	65%																	Ι											
1,1	Today's technologies for Earth Observation	65%																												
1,2	Precision agriculture strategies and indices	100%			П																									
1,3	Light Pollution assessment strategies	100%																												
1,4	Determination of Air pollution by Satellite	12%																												
2	Earth Observation measurements know-how and technologies	70%																												
2,1	Vegetation indices determination	75%																												
2,2	Light Pollution sensor comparison	100%																												
2,3	Air pollution sensor comparison	75%																	T											
2,4	Cameras selection and comparison	100%																												
2,5	Environmental measurements correlations	0%																												
3	Prototypes development	70%																												
3,1	Structure Design	100%										\Box									_									
3,2	3D printing and rapid prototiping	100%																												
3,3	Manufacturing and Integration	75%																												
3,4	Prototypes alternatives and interfaces	75%																												
3,5	Electonics and software development	70%																												
4	Field tests	66%																												
4,1	Crops monitoring	100%										\Box																		
4,2	Light pollution assessment	100%																												
4,3	Air Pollution Monitoring	0%																												
4,4	Global device final testing	0%																												
5	Data analysis and comparison	60%																												
5,1	Vegetation Indices computation	100%																												
5,2	Light pollution sources detection	45%																												
5,3	Pollutant qualitative analysis	10%																												
5,4	Satellite Data Comparison and correlation	52%									6. 1																			

- New configuration developed and field tested
- Data analysis of last test campaign and SAT data integration in progress
- Design, development and calibration of the Light pollution assessment payload for Chile flight campaign

Conclusions

Thank you for your attention

Federico Toson - 38th Cycle Supervisor: Prof. Carlo Bettanini Co-Supervisor: Prof. Giacomo Colombatti 3° year admission - 16/09/2024