

High-fidelity simulation and modeling of turbulent sprays

Xiang'en Kong - 38th Cycle

Supervisor: Prof. Francesco Picano

Co-supervisor: Prof. Federico Dalla Barba

Meeting - 16/09/2024

Spray:

https://www.freepik.com/free-vector/white-dust-spray-isolated-transparentbackground-realistic-set-smoke-powder-with-particles-splash-from-aerosolstream-spraying-cosmetic-fragrance-deodorant_10308169.htm

https://spray-imaging.com/

https://gfycat.com/impartialminoramericanbobtailflamelet-generated-manifolds-large-eddy-simulation

Particles in Wall-Bounded Turbulent Flows:

doi: <u>10.1016/j.eng.2019.04.010</u> Xiang'en Kong

Task 1: Modeling dispersed phase transport in Wall-Model Large-Eddy-Simulations

Task 2:

Near-wall transport of dispersed multiphase flows simulation using Machine-learning algorithms

j.partic.2022.12.004

Task 3:

Simulation of dispersed multiphase flows (spray, particle-laden channel) using physics-based and machine-learning algorithms

Xiang'en Kong

DNS:

Accurate simulation, but very computationally expensive

RANS:

Low computational cost but lack of fidelity

LES:

Better accuracy than RANS but high computational cost for high Reynolds numbers wall bounded flows

Wall-Model Large-Eddy-Simulations (WM-LES)

Better accuracy than RANS with lower computational cost at wall than LES

WM-LES

- $\square \quad N_x \times N_y \times N_z = 48 \times 48 \times 48 \quad \text{LOW RES!!!}$
- $\Box \quad L_x \times L_y \times L_z = 6h \times 2h \times 3h$
- $\square \quad Re_{\tau} = 1000$
- \square N_p = 300000
- **D** $St^+ = 1, 10, 100$
- □ Wall-modelled layer $y^+ < 100$ both for carrier and discrete phase (below 2.5 nodes)

$$Re_ au = rac{u_ au h}{v} \qquad St^+ = rac{ au_p}{ au^+}$$

PRELIMINARY REFERENCE DNS

- $\square \quad N_x \times N_y \times N_z = 1216 \times 512 \times 640$
- $\Box \quad L_x \times L_y \times L_z = 10h \times 2h \times 3h$
- $\Box \quad \Delta y_{min}^+ \simeq 0.5$
- $\square \quad Re_{\tau} = 1000$
- \square N_p = 300000
- **D** $St^+ = 1, 10, 100$

Navier-Stokes (incompressible) (WM-LES)

$$egin{aligned}
abla \cdot oldsymbol{ ilde{u}} &= 0 \
ho rac{\partial ilde{u}}{\partial t} &= -
abla p +
abla \cdot \left[2(\mu + \mu_{SGS}) ilde{E}
ight] \end{aligned}$$

 μ_{SGS} : Sub-grid viscosity with **WALE** \tilde{E} : Deformation tensor

Lagrangian Point-particle equations

$$rac{dv}{dt} = f_p rac{u-v}{ au_p} \hspace{0.5cm} u = ilde{u} + u^{''}$$

Algebraic Wall-model

If $u^{''}=0$, SGS fluctuation is neglected

Xiang'en Kong

Task 1:WM-LES Stochastic model

Lagrangian Point-particle equations

 $egin{aligned} rac{dv}{dt} &= f_p rac{u-v}{ au_p} \ u &= U + u_{STO} \ f_p &= 1 + 0.15 {Re_p}^{0.687} \ Re_p &= rac{2||u-v||r_p}{
u} \end{aligned}$

Xiang'en Kong

- **u** fluid velocity at particle
- \square v point-particle velocity
 - *U* averaged fluid velocity fields
- *u*_{STO} stochastic velocity fluctuations at the particle positions
 - τ_p particle relaxation time
- **G** SGS fluctuations are neglected

The normalized Langevin equations

$$d\left(\frac{u_{STO}}{\sigma_x}\right) = -\left(\frac{u_{STO}}{\sigma_x}\right)\frac{dt}{\tau_l} + \sqrt{\frac{2}{\tau_l}}d\xi_x + \left(\frac{\partial\left(\frac{wv}{\sigma_x}\right)}{\partial y}\right)\frac{dt}{1+St}$$
$$d\left(\frac{v_{STO}}{\sigma_y}\right) = -\left(\frac{v_{STO}}{\sigma_y}\right)\frac{dt}{\tau_l} + \sqrt{\frac{2}{\tau_l}}d\xi_y + \left(\frac{\partial\sigma_y}{\partial y}\right)\frac{dt}{1+St}$$
$$d\left(\frac{w_{STO}}{\sigma_z}\right) = -\left(\frac{w_{STO}}{\sigma_z}\right)\frac{dt}{\tau_l} + \sqrt{\frac{2}{\tau_l}}d\xi_z$$
$$\sigma_x, \sigma_y, \sigma_z$$
 RMS of velocity fluctuations

$$u_{CMB} = \sqrt{lpha} u_{LES} + ig(1 - \sqrt{lpha}ig) u_{AVG} + \sqrt{1 - lpha} u_{STO}$$

Dehbi, A. (2010). Validation against DNS statistics of the normalized Langevin model for particle transport in turbulent channel flows. Powder Technology, 200(1-2), 60-68.

High-fidelity simulation and modeling of turbulent sprays

Task 1: Velocity Statistics

NO MODEL

STOCHASTIC MODEL

□ For all Stokes numbers, there are apparent difference in velocity and u_{RMS} !

Particles going outside of interface may encounter fluid velocity fluctuations with opposite sign (phase opposition) thus stopping the particles at the interface for longer time!

In the interfacial region, the normalized concentrations of all Stokes peaked and deviated from DNS results!

1222+2022

Università degli Studi

DI PADOVA

Task 1:WM-LES—A Semi-stochastic Approach 1/2

LES REGION y_H^+ y_L^+ NTERFACE REGION ¢У STOCHASTIC MODEL REGION WALL 1.00.8 0.6Б 0.4 0.2 $\overset{0.0 \ L}{\mathcal{Y}_L}$ 95 y_H^{100} 85 90 $lpha = egin{cases} 1, & y^+ \geq y^+_H \ 3t^2 - 2t^3, & y^+_L \leq y^+ < y^+_H \ 0, & y^+ < y^+_L \end{cases}$ $t=1+rac{\left(y^+-y^+_L-\left(y^+_H-y^+_L ight) ight)}{y^+_{_{I\!I}}-y^+_{_{I\!I}}}$

For streamwise and spanwise velocity

$$egin{aligned} rac{dv}{dt} &= f_p rac{u-v}{ au_p} \ f_p &= 1+0.15 R e_p{}^{0.687} \ R e_p &= rac{2||u-v||r_p}{
u} \end{aligned} egin{aligned} u &= egin{cases} ilde{u} + u^{''}, & y_p^+ \geq y_H^+ \ u_{CMB}, & y_L^+ \leq y_p^+ < y_H^+ \ U+u_{STO}, & y_p^+ < y_L^+ \end{aligned}$$

$$u_{CMB} = \sqrt{lpha} ilde{u} + ig(1 - \sqrt{lpha}ig) U + \sqrt{1 - lpha} u_{STO}ig)$$

The difference between previous and present model lies in the method of calculating normal velocity.

Xiang'en Kong

Task 1:WM-LES—A Semi-stochastic Approach 2/2

WALL

For normal velocity: Modulated from the interface LES value

$$egin{aligned} rac{dv}{dt} &= f_p rac{u-v}{ au_p} \ f_p &= 1+0.15 R e_p{}^{0.687} \ f_p &= 1+0.15 R e_p{}^{0.687} \ R e_p &= rac{2||u-v||r_p}{
u} \end{aligned} egin{aligned} u &= egin{cases} ilde u + u'', & y_p^+ \geq y_H^+ \ u_{FUN}, & y_p^+ < y_H^+ \ u_{FUN}, & y_p^+ < y_H^+ \end{aligned} egin{aligned} u &= egin{aligned} ilde u &= egin{aligned} ilde u + u'', & y_p^+ \geq y_H^+ \ u_{FUN}, & y_p^+ < y_H^+ \ u_{FUN}, & y_p^+ < y_H^+ \ dy_P^+ &= egin{aligned} ilde u &= egin{aligned} ilde u &= egin{aligned} ilde u + u'', & y_p^+ \geq y_H^+ \ u_{FUN}, & y_p^+ < y_H^+ \ dy_P^+ &= egin{aligned} ilde u &= egin{aligned} ilde u$$

- $u_{LES,I} \text{ interpolated from LES velocity field at the interface at } y_H^+$ (above particle)
- **D** Function $f(y^+)$ such that:
 - $\Box \quad f(y_H^+) = 1$
 - Quadratic trend near zero
 - **D** Derivative modulated by Stokes $St^+ = \tau_p/\tau^+$

High-fidelity simulation and modeling of turbulent sprays

Task 1: SEMI-STOCHASTIC—Velocity Statistics

NO MODEL

Xiang'en Kong

SEMI-STOCHASTIC

□ Much better agreement!

OBS: Lower velocity statistics due to low resolution in LES!

High-fidelity simulation and modeling of turbulent sprays

Task 1:SEMI-STOCHASTIC – cis Concentrations

Much better agreement of normalized concentrations!

- I. We developed a model for the near-wall numerical treatment of pointparticle/droplet-laden flows in Wall-Modelled Large Eddy Simulation (WM-LES). Models blending a stochastic approach, i.e. the Langevin equations, with properly rescaled LES velocity fields along the wall-normal direction
- II. A machine learning model will be developed for the high-fidelity simulation of **particle-laden flow near the wall**
- III. A machine learning model will be developed for the high-fidelity simulation of **turbulent sprays**

GANTT CHART

PHD STUDENT	Xiang'en Kong	DATE	06/09/2024
PHD THESIS	High-fidelity simulation and modeling of turbulen	ADMISSION TO	Year III

			FIRST YEAR						SECOND YEAR									THIRD YEAR										
WBS TASK TITLE		% OF TASK	T1	1	T2		T3		1	۲4	T	[1	T	2		Т3		T4		T1		Т	2		Т3		T4	
NUMBER		COMPLETE	O N	D.	JF	Μ	AM	J	J	A S	0	N D	JI	FM	Α	M .	l l	Α	s o	N	D	JI	M	Α	м .	l l	A	S
1	Bibliographical Research																											
1.1	Learning fluid mechanics and the turbulent flows theory	100%																										
1.2	Literature reviews on turbulent spray dynamics																											
2	OpenFOAM Simulation																											
2.1	Training for OpenFOAM	100%																										
2.2	Non-reactive spray simulation in LES standard	100%																										
2.3	Reactive spray simulation in LES standard																											
EVENT	VENT Admission to Year II																											
3	Definition of WM-LES Model and Machine-learning Algorithm for Particle Transport																											
3.1	Learning the principles and algorithms of machine learning as well as deep learning	100%																										
3.2	Stochastic modeling for particles transport in wall-modeled Large Eddy Simulation																											
3.3	Machine-learning algorithms for particle-laden flow near the wall																											
EVENT	Admission to Year 🎟																											
4	Definition of Machine-learning Algorithm for Spray Droplets Transport																											
4.1	Machine-learning algorithms testing for particle-laden flow near the wall	0%																										
4.2	Machine-learning algorithms for spray droplets transport	0%																										
4.3	Machine-learning algorithms testing for non-reactive spray	0%																										
EVENT	Admission to Final Examination																											
5	Writing Thesis and Reports	0%																										

Thanks for the attention

Università degli Studi di Padova