

Design and prototyping of a Guidance Navigation and Control system suitable for a lunar rover

Simone Fortuna - 38th Cycle

Supervisor: Prof. Marco Pertile Co-supervisors: Andrea Merlo, Sebastiano Chiodini, Andrea Valmorbida

Admission to the 3rd year - 16/09/2024

Main Activities (Oct 2023 - Aug 2024)

- 1. Enhancement of LiDARs comparison
- 2. Continuous Terrain Mapping for AutNav
- 3. Path Tracking and Maneuvering Strategies for Lunar Rovers

Ouster OS1 vs Livox Horizon

- Motorized Optomechanical vs MEMS Scanner
- SLAM Algorithm used: FAST LIO 2
- Comparison of metrological aspects:
 - Absolute Trajectory Error (ATE)
 - Map Quality
 - Uncertainty
 - Computing Time
 - N° of tracked features

Continuous Terrain Mapping

• Traversability Maps: what information could be registered and what we chose?

- Roughness
- Semantic terrain classification
- Objective: speed up real-time map construction by avoiding normals and using DEMs
- ROS 2 environment

#2 Mapping - Introduction

Continuous Terrain Mapping

• Traversability Maps: what information could be registered and what we chose?

- Roughness
- Semantic terrain classification
- Objective: speed up real-time map construction by avoiding normals and using DEMs
- ROS 2 environment

Comparison Methods

- Static context, RoXY Starting from the point cloud of the entire real environment no nav
- **Dynamic context, RoXY** Navigating in the same outdoor environment

• Static context, custom env - Custom env to know real slopes and compute accuracy

• Static context, ROXY

• Dynamic context, ROXY

• Static context, custom env

Normals

Simone Fortuna

#2 Mapping – Results

Simone Fortuna

Simone Fortuna

#3 Maneuvers - Introduction

ULS platform constraints

- Non-holonomic
- Set of loc modes

٠

- No skid steering
- **Kinematic Limits**

Simone Fortuna

Concerns for ULS maneuvering

- Is the planned trajectory feasible?
- What locomotion mode must be chosen?
- What kind of controller must be used?

- Non-holonomic
- No skid steering
- Kinematic limits

Simone Fortuna

Integrations and adjustments

- New Maneuver Server
 - Modularity
 - ✓ Nav2 as-is
 - ✓ Simple Nav2 integration
- Behavior Tree Integrations
- New controller for each locomotion mode

Integrations and adjustments

Behavior Tree TF map sensor data

- New Maneuver Server
 - Modularity
 - ✓ Nav2 as-is
 - ✓ Simple Nav2 integration
- Behavior Tree Integrations
- New controller for each locomotion mode

#3 Maneuvers – BT integration

No-Replanning BT configuration

#3 Maneuvers – Path Splitting Logics

Path Splitting Logics

- Maximizing Crabbing
- Receive a direction
- Translate while keeping a specific orientation
- Turn-In-Place + Ackermann when not feasible
- Ackermann + Turn-In-Place
 - ➢ Find curvatures, split for R_{curv} < R_{min}
 - > 1 Turn-in-Place or 2 Turn-in-Place

#3 Maneuvers – Path Splitting Logics

Path Splitting Logics

- Maximizing Crabbing
 - Receive a direction
 - Translate while keeping a specific orientation
 - Turn-In-Place + Ackermann when not feasible
 - Ackermann + Turn-In-Place
 - ➢ Find curvatures, split for R_{curv} < R_{min}
 - > 1 Turn-in-Place or 2 Turn-in-Place

PHD STUDENT		Fortuna Simone			DATE						09/09/2024																	
PHD THESIS		Design and prototyping of a Guidance Navigation and Control system suitable for a lunar rover				ADMISSION TO						Third year in the Sciences, Technologies and Measurements for Space PhD Course																
				FIRST YEAR									SECOND YEAR								THIRD YEAR							
WBS NUMBER	FR TASK TITLE		% OF TASK COMPLETE	T	1 1	T2	м	T3	T	T4	4		F1]	2 E M	1	3 17 T] T	[4	0	T1	D	T2	м	T	; 	T	Γ4
1	Skills Acquisition and Literature Rev	/iew		Ur		Jr	MI.	A M		JA		U	ND	J	r IVI	A	VI J	J	AS		N	יע	, r	NI	AM	J	J	AS
1.1	Study of Visual SLAM																											
1.2	2 Acquiring skills in programming and ROS framework		100%																									
1.3	1.3 Navigation sensors and strategies review		100%																									
1.4	.4 Rover GNC systems/architectures review		80%																									
2	GNC system design and prototyping																											
2.1	2.1 Use cases and requirements definition for the lunar rover																											
2.4	2.4 Design of GNC architecture and hardware implementation																											
3 Navigation SW and algorithms development																												
3.1	3.1 Definition of navigation/locomotion strategies																											
2.2	Nationation SW and algorithms development																									A 19		

3.1	Definition of navigation/locomotion strategies	
3.2	Navigation SW and algorithms development	
4	SW/HW tests and navigation strategies validation	
4.1	Test campaign	
4.2	Test results analysis	10%
5	Thesis writing and reports/articles redaction	
5.1	Writing reports	40%
5.2	Article redaction	50%
5.3	PhD Thesis	20%

Simone Fortuna

Thanks for the attention

Università degli Studi di Padova