

Università degli Studi di Padova

Advanced technologies for carbon capture and biohydrogen production

Alessandro Crescenzi - 40th Cycle

Supervisor: Prof. Francesco Picano Admission to the first year - 13/11/2024

Project Motivations

Space exploration: waste management and supply issue

- > Aim to **longer missions** and to establish extraterrestrial **human settlements**
- > Crew needs to carry along all the supplies needed during the mission
- > Every missions produces enourmous quantities of waste that goes unrecycled

Alessandro Crescenzi

Advanced technologies for carbon capture and biohydrogen production

Project Motivations

- Currently the ISS is equipped with an Environmental Control and Life Support System (ECLSS), comprised of six sub-systems.
- > The Water and Recovery Management (WRM) system is responsible of "waste management".
- Through chemical and physical processes, the UPA and WPA are able to produce potable water, used for drinking, hygiene and flushing water
- Total mean waste for every single mission is estimated to be of around 6 tons of CO2, 8 tons of urine and 13 tons of H2O
- Still, solid waste is not taken in consideration at all

Advanced technologies for carbon capture and biohydrogen production

Università degli Studi di Padova

State of the art

Closing the loop: MELiSSA (Micro-Ecological Life Support System Alternative)

- For decades, attempts have been made to close the loop, using organic waste to produce crew supplements
- At the moment MELiSSA, using five different organisms in five separate compartments (bioreactors), produces all the nutrients to grow superior plants
- The system has been proven to work, but is particularly complex to deploy profitably in orbit, currently

Lasseur, Christophe. (2008). Melissa: The European project of a closed life support system.

Advanced technologies for carbon capture and biohydrogen production

Alessandro Crescenzi

Background: BioMOON

A different take on Life Support Systems

- Project developed by Veritas S.p.A., commissioned by the Agenzia Spaziale Italiana (ASI)
- Less complex than MELiSSA, simpler actual deployment
- Three distinct biological systems, three different organisms: microalgae, nonsulphuric red bacteria (PNSB), and a granular sludge of methanogenic bacteria
- These microorganism will be positioned in bio/polymeric matrices, to achieve better water utilisation

Advanced technologies for carbon capture and biohydrogen production

Alessandro Crescenzi

Task #1: Experiments at Veritas

Producing data from actual experiments

- Collaboration with Green Propulsion
 Laboratory (Veritas S.p.A., Fusina)
- Study of the behaviour of the flow through parts of the system
- Investigation on the effects of the introduction of porous matrices as culture medium
- Performance analysis of different bioreactors shapes
- Overall data collection to be used in computational model validation

Task #2: CFD Development

CFD models based on previous data:

- Development of a macroscopic model to study the motion of bubbles within the reactor using commercial software
- Development of a macroscopic model to study the motion of bubbles within the reactor using in-house software
- Development of a microscopic model (of micro-cavities and the exchange of liquid and gas across the matrix surface)
- The model will be applied to all three reactor types studied and will allow optimisation of reactor geometry and size

Task #3: Gravity Effect

Moon/Mars settlement and orbit environment

Open questions:

- How well do bioreactors work in these conditions?
- Are new setups or approaches needed?

New experiments are to be done, possibily in simulated **microgravity environments**.

Computational models will be updated and validated.

Advanced technologies for carbon capture and biohydrogen production

Alessandro Crescenzi

Università degli Studi di Padova

GANTT Chart

			FIRST YEAR									SECOND YEAR									THIRD YEAR								
WBS NUMBER	TASK TITLE	% OF TASK	T	T1 T2		T2	2 ТЗ			T4 T1			T2		Т3		T4		T1			T2		Т3		T4			
		COMPLETE	NI	DJ	F	M A	M	JJ	Α	S	O N	D	J	FM	Α	M J	J	A	6 0	N	DJ	F	М	Α	M J	J	Α	S O	
1	BioMoon system experiments at GPLab																												
1.1	GPLab acclimatisation	0%																											
1.2	Analysis of the state of the art	0%																											
1.3	Preparation and validation of the experimental set	0%																											
1.4	Data collection	0%																											
2	Computational models development																												
2.1	Analysis of the state of the art	0%																											
2.2	Model development through commercial software	0%																											
2.3	Model development through in-house software	0%																											
2.4	Microscopic model development	0%																											
2.5	Models validation	0%																											
3	Micro-gravity conditions study																												
3.1	Introduction of the model in new gravitational settings	0%																											
3.2	Models validation	0%																											
3.3	Result analysis and eventual improvements	0%																											
4	Writing thesis and reports																												
4.1	Reports for admission to the next year or conferences	0%																	12										
4.2	Writing thesis	0%																											

Alessandro Crescenzi

Advanced technologies for carbon capture and biohydrogen production

Thanks for the attention

Università degli Studi di Padova