

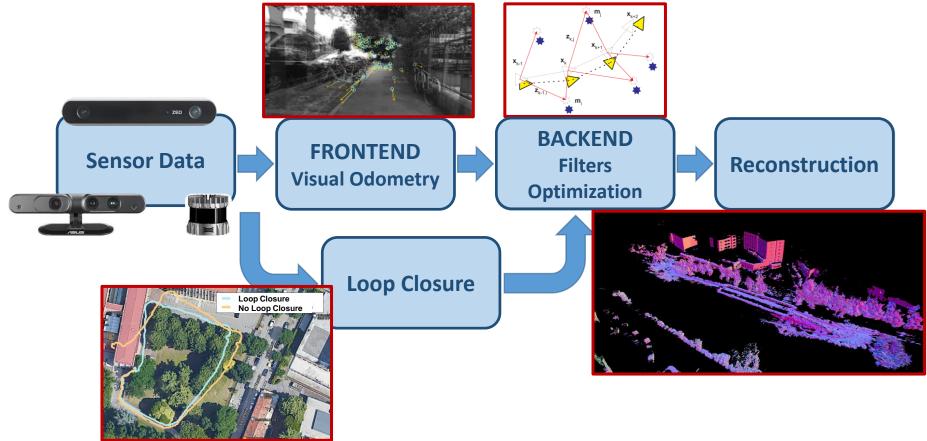
Design and prototyping of a Guidance Navigation and Control system suitable for a lunar rover

Simone Fortuna - 38th Cycle

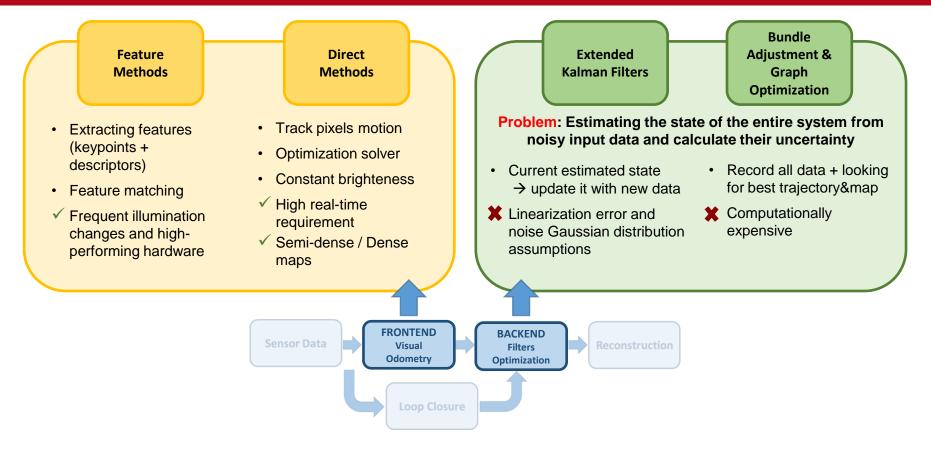
Supervisor: Prof. Marco Pertile Co-supervisors: Sebastiano Chiodini, Andrea Merlo, Andrea Valmorbida Admission to the 2nd year - 13/09/2023

Design and prototyping of a Guidance Navigation and Control system suitable for a lunar rover

- 1. Design and HW implementation of the lunar rover GNC system
- 2. SW and algorithms development for navigation and control tasks
- 3. SW/HW tests and navigation strategies validation

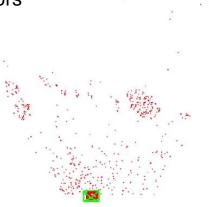

Main Activities:

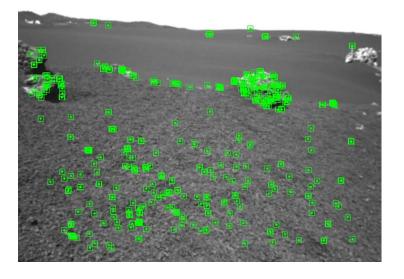
- Individual study of Visual SLAM (focusing on ORBSLAM3)
- Courses on Python, C++, AI, ROS
- Work on LiDARs with MORPHEUS rover
- IEEE Summer School on Multi-Robot Systems


Simone Fortuna

Science and Technology for Space Exploration

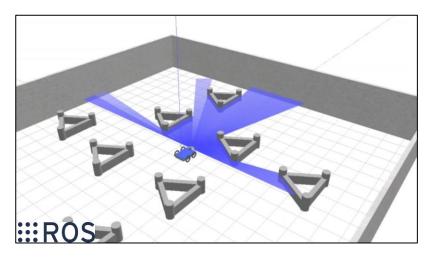
Visual SLAM

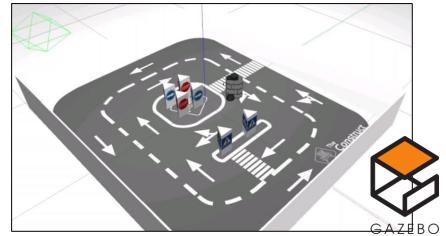




ORBSLAM algorithm

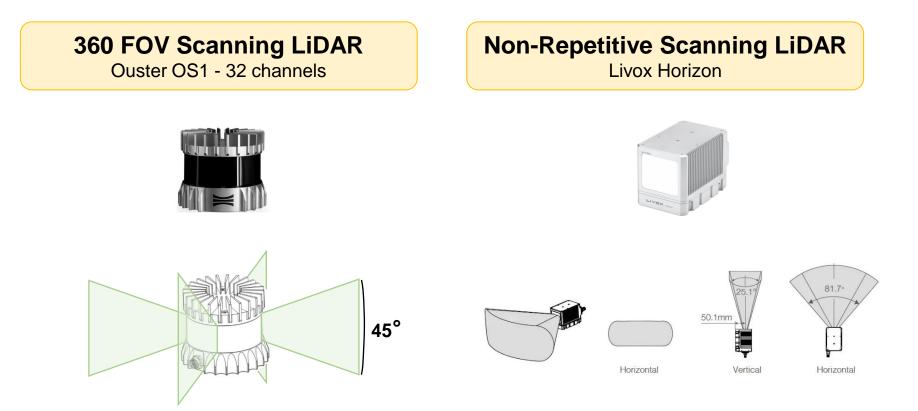
- ✓ Supporting various sensors
- ✓ ORB features
- ✓ Three-threads structure
- ✓ Excellent LC algorithm
- X Expensive
- X Sparse Feature Points
 - → Sparse Maps

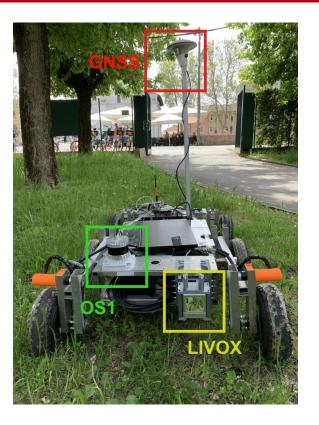


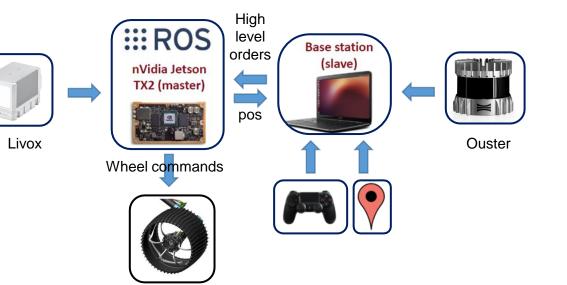


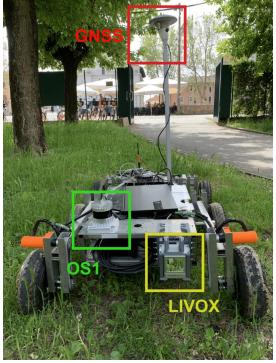
Why ROS?

- Peer to peer
- Distributed
- Multi-lingual

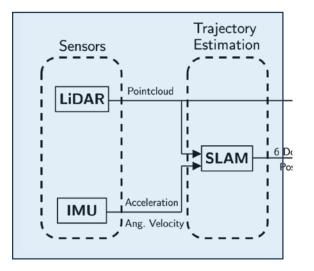

- Light-weight
- Free and open-source

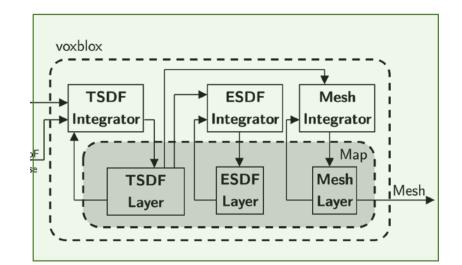



Università degli Studi di Padova


1222+2022

	Livox Horizon					
Maximum Detection Range	90 m @ reflectivity 10% 130 m @ reflectivity 20% 260 m @ reflectivity 80%	90 m @ reflectivity 10% 170 m @ reflectivity 80%				
Minimum Detection Range	0.5 m	0.5 m				
FOV (H×V)	$81.7^{\circ} \times 25.1^{\circ}$	$360^{\circ} \times 45^{\circ}$				
FOV Coverage ¹	60% @ 0.1 s 98% @ 0.5 s	NA ¹				
Point Acquisition Rate	> 240,000 points/s	1,310,720 points/s				
Random Error $(1 - \sigma)$	0.02 m @ 20 m	0.05 m @ 0.5 m 0.1 m @ 90 m				
	0.02 m @ 20 m IMU BMI0881	0100 m = 010 m				
		0.1 m @ 90 m				
$(1-\sigma)$	IMU BMI0881 Accelerometer (A): 0.09 mg Gyroscope (G):	0.1 m @ 90 m IMU IAM-20680HT Accelerometer (A): 0.06 mg Gyroscope (G):				
$(1 - \sigma)$ Resolution	IMU BMI0881 Accelerometer (A): 0.09 mg Gyroscope (G): 0.004°/s (A) ± 3 g	0.1 m @ 90 m IMU IAM-20680HT Accelerometer (A): 0.06 mg Gyroscope (G): 0.008°/s (A) ± 2 g				


1222+2022


Università

degli Studi di Padova

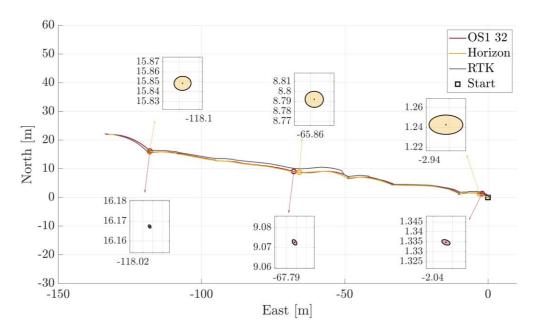
Fast LiDAR-Inertial Odometry (FAST-LIO)

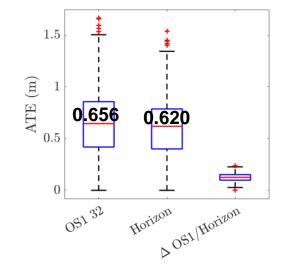
- · Efficient and robust package
- Allows robust navigation in fast-motion, noisy or cluttered environments

VOXBLOX

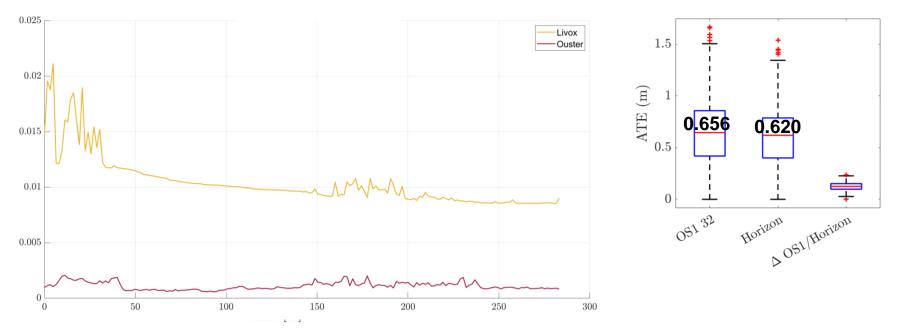
 Generates a three-dimensional volumetric map based on the Truncated and Euclidean Signed Distance Field (TSDF and ESDF)

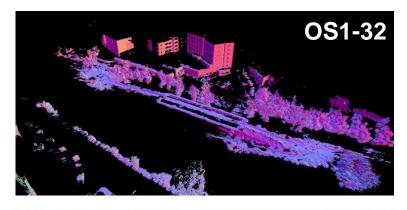
1222+2022

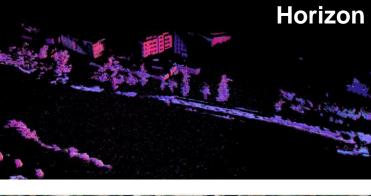

Università


degli Studi di Padova

Trajectory comparison




Comparison max eigenvalues



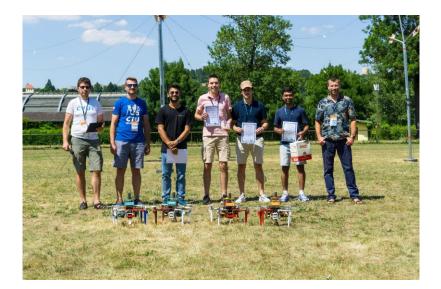
LiDAR Comparison - Results

Longitude

Simone Fortuna

Science and Technology for Space Exploration

Conclusions


- OS1 LiDAR \rightarrow ATE = 0.656 m Horizon LiDAR \rightarrow ATE = 0.620 m Ouster/Horizon \rightarrow 0.125 m
- Horizon LiDAR demonstrated slightly lower trajectory estimation error, likely due to lower random error in distance measurements and resulting in a denser point cloud within its field of view.
- However, OS1 LiDAR proved to be more reliable overall due to its 360-degree field of view, reducing the risk of losing track of features evenly distributed throughout the environment.

IEEE Summer School on Multi-Robot Systems

PHD STUDENT	Fortuna Simone	DATE	06/09/2023
PHD THESIS	Design and prototyping of a Guidance Navigation and Control system suitable for a lunar rover	ADMISSION TO	Second year in the Sciences, Technologies and Measurements for Space PhD Course

			FIRST YEAR									SECOND YEAR									THIRD YEAR									
WBS		% OF TASK				Т2		Г3		T4		T1		T2		Т3		T4		T			T2		Т3		T4			
NUMBER		COMPLETE	0 N	D	J	F M	A	M J	J	A S	0	NI	D J	F	M A	M	JJ	Α	S	O N	D	J	F N	A	M	JJ	Α	S		
1	Skills Acquisition and Literature Review																													
1.1	Study of Visual SLAM	100%																												
1.2	Acquiring skills in programming and ROS framework	100%																												
1.3	Navigation sensors and strategies review	<mark>50</mark> %																												
1.4	Rover GNC systems/architectures review	70%																												
2	GNC system design and prototyping																													
2.1	Use cases and requirements definition for the lunar rover	<mark>50</mark> %																												
2.4	Design of GNC architecture and hardware implementation	0%																												
3	Navigation SW and algorithms development																													
3.1	Definition of navigation/locomotion strategies	0%																												
3.2	Navigation SW and algorithms development	0%																												
4	SW/HW tests and navigation strategies validation																													
4.1	Test campaign																													
4.2	Test results analysis																													
5	Thesis writing and reports/articles redaction																													
5.1	Writing reports	0%																												
5.2	Article redaction	10%																												
5.3	PhD Thesis	10%																												

Thanks for the attention

Università degli Studi di Padova