

Freeform optics for space instruments

Chiara Doria - 38th Cycle

Supervisor: Dott. Alessio Taiti

Co-Supervisor : Prof. Giampiero Naletto - Dott. Gabriele Cremonese Admission to the second year - 13/09/2023

Chiara Doria

Introduction

Freeform surfaces

Chiara Doria

Freeform optics for space instruments

Optical space Instruments typical requirements

Volume: Minimize the total amount of optical elements to maintain in an easier way the optical alignment.

Optical quality: Correct optical aberrations to obtain clear and sharp images.

Manufacturing: Ensure the use of top-grade materials and manufacturing techniques for precision lenses and mirrors.

Designing optical space instruments demands a careful balance of precision engineering, environmental considerations, and advanced technology. Meeting these requirements is essential for the success of space exploration missions.

Aberration behaviour for system with FF surfaces

Freeform optics for space instruments

Aberration behaviour for system with FF surfaces

Zernike standard polynomials

Zernike polynomial set through 6th order in wavefront expansion.

Z1 piston,
Z2/3 tilt,
Z4 defocus,
Z5/6 astigmatism,
Z7/8 coma,
Z9/10 elliptical coma or trefoil,

Z11 spherical aberration,

Z12/13 secondary astigmatism,

Z14/15 quadrefoil,

Z16 secondary spherical aberration

Aberration behaviour for system with FF surfaces

Aberration for system with freeform

A key point is that freeform optics have different impact in terms of aberrations contribution depending on their position in the system [1]:

- If the FF is applied on a surface located at the stop, the net aberration is field constant, meaning that we have just the applied aberration.
- If the FF is applied on a surface away from the stop, the aberration becomes field dependent, and new correlated aberrations contributions appear.

Aberration behaviour for system with FF surfaces

Field dependent aberration

PRISMA SG spectrometer

The layout of the instrument has been realized at Leonardo S.p.A. and it is based on the Offner-Chrisp spectrometer with an off-axis configuration. Its <u>spatial resolution is</u> <u>of 10 m/pixel</u>, over a field of view of 30 km. (x3 better than PRISMA spectrometer)

Designing PRISMA SG spectrometer...

- Different kinds of polynomials (Zernike, Chebyshev, XY) were studied to understand which should be the best compromise in terms of computational weight and performance.
- Freeform mirrors enables to increase the FOV maintaining a good distortions correction thanks to the great flexibility offered by the increased number of degrees of freedom.
- The spectrometer provides a good correction for smile and keystone distortions keeping a good optical quality over the whole FOV and spectral range.

Next step of the design:

Manufacturing and Alignment study

Freeform grating

Freeform grating

From literature introducing FF grating allows to:

- Reduce of about a factor of x5 in volume.
- Correct aberrations and achieve a high resolution[6].
- Decrease the total number of optical elements.

Case Study:

The aim of the activity is to understand the potential in terms of Field of View (FOV) by introducing a freeform grating in an F#3 Offner Spectrometer starting from the following requirements:

Parameter	Requirement
Spectral range	400-2500 nm
Smile	< 5µm
Keystone	< 3µm
MTF@14 cycles/mm	> 0.7
Grating dispersion	3.1 nm/mm

Design steps and maximun FOV achieved:

FoV of 58 mm with Freeform grating

Final parameters	
Keystone	1.326 μm
Smile	4.513 μm
MTF	> 0.700
n. coefficients	16

Future work

- Discover which are the limits of this technology and how much the performance can be increased thanks to freeform optics.
- Implement an algorithm to automatically move from one polynomial base to another for the freeform description.
- Study of the Breadboard of PRISMA SG spectrometer.
- Introduction of freeform surfaces to CubeSat's optical instrument aiming to reduce the dimension.

Progress of the work

GANTT CHART

PHD STUDENT	Chiara Doria	DATE	13/09/2023
PHD THESIS	Freeform optics for space instruments	ADMISSION TO	Second year

					FI	RST \	(EAR							SEC	OND	ND YEAR						THIRI			DYEAR			
WBS	ER TASK TITLE %	% OF TASK	Т	1	T2		Т3		т	T4		T1		Т2		Т3		T4		T1			T2		Т3			Т4
NUMBER		COMPLETE	0	N D	JF	м	A M	J	JA	A S	0	N D	J	F	м	A M	J	J	\ s	0	NC	J	F	м	A M	J	J	A S
1	Bibliography research and preliminary mathematical design of freeforms optics																											
1.1	State of art and theory of freeform optics	90%																										
1.1.1	Freeform applied to spectrometers	80%																										
1.1.2	Software simulations for raytracing	80%																										
1.2	Methodologies for the mathematical description of freeform optics	85%																										
1.2.1	Primary simulations of the design and performance	90%																										
2	Manufacturing of freeform mirroors for PRISMA second generation application																											
2.1	Manufacturing study	30%																										
2.1.1	Mid-spatial frequency analysis	0%																										
2.1.2	Parametrizing in the optimal way the machine/tools	0%																										
3	Analysis of the performance of the mirror on the prototype of PRISMA																											
3.1	Achieving of the best optical layout configuration	0%]																									
3.2	Analysis of the effective performance of the mirrors on PRISMA	0%																										
4	Design of an optical layout for freeform application to miniaturize the satellite																											
4.1	Deepening on the main applications of freeform optics on small satellite	0%																										
4.1.1	Deepening on the main structural advantages introduced by freeform optics	0%																										
4.2	Optical layout configuration for small satellite	0%																										

References

[1] K. Fuerschbach, J. P. Rolland, and K. P. Thompson, "Theory of aberration fields for general optical systems with freeform surfaces," Optics Express **22**, 26585-26606, 2014.

[2] A. Bauer, E. Schiesser, J.Rolland, "Starting geometry creation and design method for freeform optics". Nature Communications. 9. 10.1038/s41467-018-04186-9, 2018.

[3] Meini, M., Battazza, F., Formaro, R., and Bini, A., "Progress in the hyperspectral payload for PRISMA programme", in Sensors, Systems, and Next-Generation Satellites XVII, 2013.

[4] B. Borguet, V. Moreau, A. Z. Marchi, M. Miranda, and A. Cotel, "CHIMA: Design and Performances of a Freeform Grating High Spectral Resolution Spectro-Imager," in Optical Design and Fabrication 2019 (Freeform, OFT), OSA Technical Digest (Optica Publishing Group, 2019), paper FM4B.2.

[5] A. Calcines, C. Bourgenot, R. Sharples, "Design of freeform diffraction gratings: performance, limitations and potential applications," Proc. SPIE 10706, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 107064Z, 2018.

[6] B. Zhang, Y. Tan, Guofan Jin, J. Zhu, "Imaging spectrometer with single component of freeform concave grating," Opt. Lett. 46, 3412-3415 (2021)

Thanks for the attention

Università degli Studi di Padova