

Università degli Studi di Padova

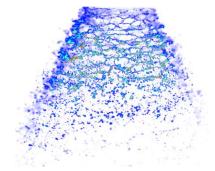
High-fidelity Simulations of Sprays Using Artificial Intelligence Models

Xiang'en Kong - 38th Cycle

Supervisor: Prof. Francesco Picano

Co-supervisor: Dr. Federico Dalla Barba

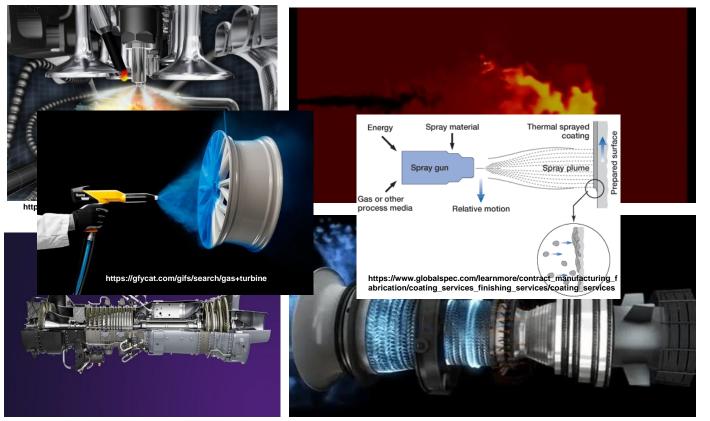
Meeting - 09/11/2022



A spray is a two-phase flow which involves a liquid as dispersed or discrete phase in the form of droplets or ligaments and a gas as the continuous phase.

Important and challenging fluid-dynamic and transport phenomena can occur in many different ways within sprays.

https://www.freepik.com/free-vector/white-dust-spray-isolated-transparentbackground-realistic-set-smoke-powder-with-particles-splash-from-aerosolstream-spraying-cosmetic-fragrance-deodorant 10308169.htm


https://spray-imaging.com/

https://gfycat.com/impartialminoramericanbobtailflamelet-generated-manifolds-large-eddy-simulation

Why Spray is important?

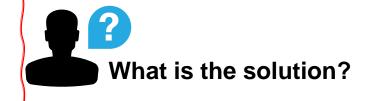
Applications:

- Internal combustion engines
- Gas-turbine Engine
- Manufacturing technologies
- etc...

https://www.siemens-energy.com/global/en/offerings/powergeneration/gas-turbines.html https://gfycat.com/gifs/search/gas+turbine

Traditional methods to study spray and their advantages and disadvantages:

Theoretical analysis	Advantage: The results of theoretical analysis can reveal the internal law of flow and have universal applicability Disadvantage: The analytical scope of this approach is limited
Experiments	Advantage: The experimental results can reflect the actual flow law in engineering, discover new phenomena and test the theoretical results Disadvantage: The universality of the experimental results is poor
≻ CFD	Advantage: This method can calculate the mathematical equations which cannot be solved by the theoretical analysis method, and it saves time and money than the experimental method. It is most suitable for engineering applications. Disadvantage: Its scope of application is limited by the correctness of mathematical models and the performance of computers



How to further optimize spray modeling?

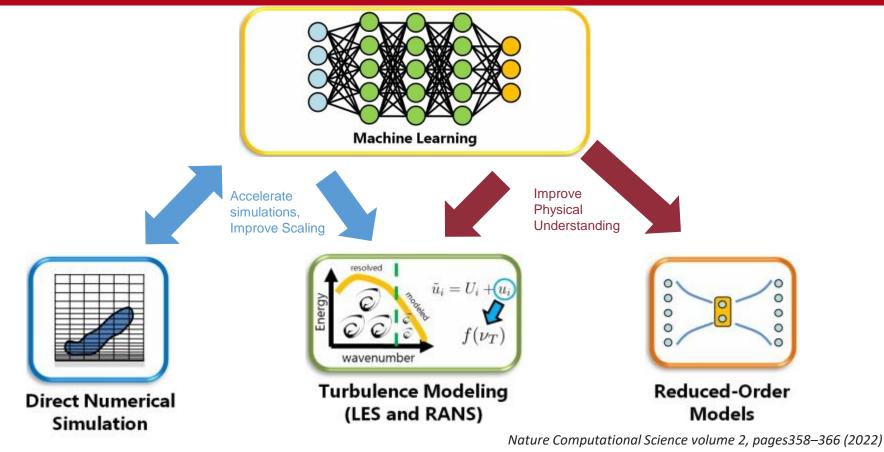
Limitations of spray modeling by CFD:

- Limitation from the correctness of mathematical models
- High computational costs

Al is a promising solution!

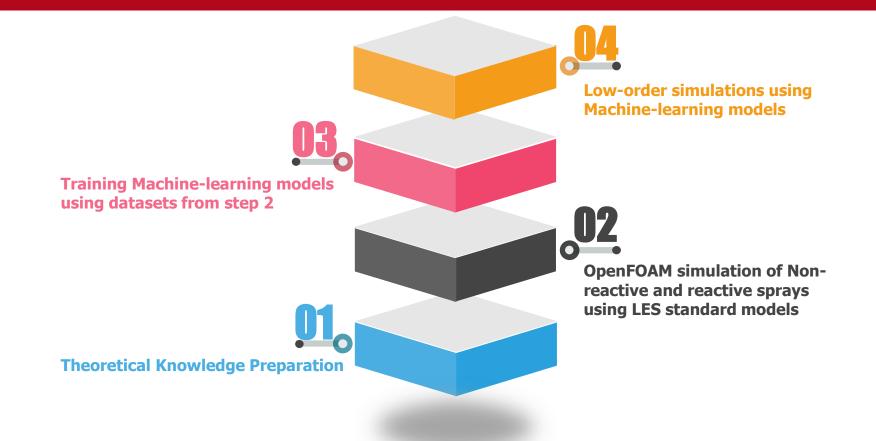
With the development of deep learning and machine learning, artificial intelligence is bringing many changes to CFD by improving gridding friendliness, reducing manual intervention, improving turbulence prediction accuracy, and fast data visualization analysis

Machine learning algorithms

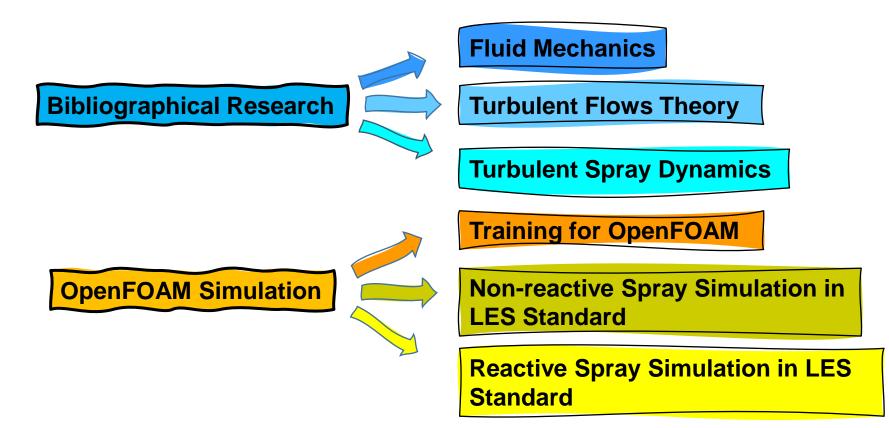

	Superv	vised	Semisupervise	ed U	nsupervised	
Classification	Regression	Optimization and control	Reinforcement learning	Generative models	Clustering	Dimensionality reduction
Support vector Machines Decision trees Random forests Neural networks	Liner Generalized linear Gaussian process	Liner control Genetic algorithms Deep model predictive control Estimation of distribution algorithms Evolutionary strategies	Q-learning Markov decision Processes Deep reinforcement learning	Generative adversarial networks	<i>k</i> -means <i>k</i> -nearest neighbor Spectral clustering	POD/PCA Autoencoder Self-organizing maps Diffusion maps

Annu. Rev. Fluid Mech. 2020. 52:477-508

Summary of some of the most relevant areas where machine learning can enhance CFD



High-fidelity Simulations of Sprays Using Artificial Intelligence Models



High-fidelity Simulations of Sprays Using Artificial Intelligence Models

Research plan for Year I

Machine-learning Algorithms trained on datasets of Nonreactive Spray Simulation

Machine-learning Algorithms trained on datasets of Reactive Spray Simulation

Implementation of New Algorithms in OpenFOAM

JNIVERSITÀ

degli Studi di Padova

Machine-learning Algorithms Testing for Non-reactive Spray

Machine-learning Algorithm in OpenFOAM

> Machine-learning Algorithms Testing for Reactive Spray

WBS

NUMBER

1 1.1

1.2

2

2.1 2.2

2.3

3 3.1

3.2

3.3

4 4.1

4.2

5

EVENT

EVENT

EVENT

R TASK TITLE	% OF TASK COMPLETE				FIR	ST \	SECOND YEAR									THIRD YEAR																	
			r1 N D	J	T2 F	M	TK A M			14 A S	0	T1 N	D		T2 F	MA	T:	C	J	T4 A	2	0	T1 N	D	J	T2 F		A	Т3 М	J		T4 A	S
Bibliographical Research																																	
Learning fluid mechanics and the turbulent flows theory	30%									Î			\square				Τ	Γ															
Literature reviews on turbulent spray dynamics	0%																																
OpenFOAM Simulation																																	
Training for OpenFOAM	0%				1 I																												
Non-reactive spary simulation in LES standard	0%							Ĺ	Ì									Τ															
Reactive spary simulation in LES standard	0%																	Т															
Admission to Year II																																	
Definition of Machine-learning Algorithm for Droplets Transport																																	
Machine-learning algorithms trained on dataset of 2.2	0%																	Г															
Machine-learning algorithms trained on dataset of 2.3	0%	\square																															
Application new algorithms in OpenFOAM	0%	\square																			Í												
Admission to Year III	0%	\square									-							T		Ť										_			
Machine-learning Algorithm in OpenFOAM																																	
Machine-learning algorithms testing for non-reactive spray	0%																																
Machine-learning algorithms testing for reactive spray	0%																																

0%

Admission to Final Examination

Writing Thesis and Reports

Thanks for the attention

Università degli Studi di Padova