

High fidelity simulations of high speed flows for aerospace problems

Michele Cogo - 37th Cycle

Supervisor: Prof. Francesco Picano

Admission to the second year - 05/09/2022

High-speed flows:

Flight trajectories on Earth...

Adapted from Urzay, Annual Review of Fluid Mechanics [2018]

...and reentry on Mars

Main features of high-speed flight at low altitudes:

- High Reynolds number (turbulent boundary layers)
- High freestream Mach numbers (intense shocks and large recovery temperatures)
- Aerodynamic heating (large thermal fluxes)

The presence of turbulent, hot and highly compressible boundary layers increase the mechanical and thermal loads on the vehicle!

<u>A detailed description of the flow dynamics is</u> <u>essential to predict drag and thermal fluxes</u>

First task: Simulation of supersonic and hypersonic turbulent boundary layers over smooth wall with Direct

Numerical Simulation (DNS)

Higher Reynolds number where considered than what is available in literature:

Objectives of this study:

- Address the Mach and Reynolds numbers effect on instantaneous and mean properties of the flow
- Expand the range of validation of theoretical transformations and relations to higher Re
- Investigate the spatial organization of turbulent structures and thermal energy Michele Cogo

Solver	Numerical method	Numerical schemes
 <u>STREAMS</u> (Bernardini et al. CPC 2021): Open-source numerical solver for compressible flows Supports MPI parallelization and multi- GPU architectures 	 <u>Direct Numerical Simulation</u>: Navier-Stokes equations are solved with very high temporal and spatial resolution, down to the Kolmogorov scale No model is employed 	 <u>State-of-the-art numerical schemes :</u> Convective terms: hybrid energy- conservative shock-capturing scheme + sixth-order energy consistent flux Viscous terms: sixth-order schemes expanded in Laplacian form

 $(\mathbf{T}\mathbf{T})$

Navier-Stokes equations in the conservative formulation:

OTT

Calorically-perfect gas:

 $E = c_v T + u_i u_i / 2$

 $H = E + p/\rho$

$$\frac{\partial \mathbf{U}}{\partial t} = -\frac{\partial \mathbf{F}_{\mathbf{j}}(\mathbf{U})}{\partial x_{j}} + \frac{\partial \mathbf{F}_{\nu \mathbf{j}}(\mathbf{U})}{\partial x_{j}}$$
$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho u_{j} \\ \rho E \end{bmatrix} \mathbf{F}_{\nu \mathbf{j}}(\mathbf{U}) = \frac{\sqrt{\gamma}M_{\infty}}{Re} \begin{bmatrix} 0 \\ \sigma_{ij} \\ \sigma_{ij}u_{j} - \frac{1}{Pr}\frac{\gamma}{\gamma-1}q_{j} \end{bmatrix} \mathbf{F}_{\mathbf{j}}(\mathbf{U}) = \begin{bmatrix} \rho u_{j} \\ \rho u_{i}u_{j} + p\delta_{ij} \\ \rho u_{j}H \end{bmatrix}$$

Michele Cogo

High fidelity simulations of high speed flows for aerospace problems

 $p = \rho T$

Task #1: Database

Four simulations have been performed:

- We addressed supersonic (M=2) and hypersonic (M=6) turbulent boundary layers
- Two Reynolds numbers where studied for each Mach number
- Every simulation falls in the *cold wall* case, $\frac{T_w}{T_r} < 1.$

Summary of parameter for DNS s	study
--------------------------------	-------

Run	M_{∞}	$Re_{ au}$	T_w/T_r	N_x	N_y	N_z
M2Tw076/1	2.00	340 - 620	0.76	4096	320	512
M2Tw076/2	2.00	1240 - 2300	0.76	16384	832	2048
M6Tw076/1	5.86	290 - 520	0.76	4096	320	512
M6Tw076/2	5.86	1080 - 1953	0.76	16384	832	2048

Michele Cogo

High fidelity simulations of high speed flows for aerospace problems

Task #1: Selected Results

Contours of the instantaneous field of density gradient in a streamwise wall-normal plane

0.4 0.6 0.8 1.0 Selected station y/δ $\frac{g}{\hbar}^2$ x/δ x/δ (a) M2L (b) M2H $\frac{9}{h}^2$ $\frac{g}{h}$ 34 5856 x/δ x/δ

(c) M6L

(d) M6H

 Intense gradients separate the turbulent region from the freestream flow

- Finer-scale features are present at high *Re*
- Acoustic radiation is significantly higher for hypersonic cases

Boundary layer proper	ies at selected stations
-----------------------	--------------------------

Station	Run	Re_{τ}	Re_{θ}	Re_{τ}^{*}
M2L	M2Tw076/1	453	1423	654
M2H	M2Tw076/2	1947	7562	3504
M6L	M6Tw076/1	453	5632	2815
M6H	M6Tw076 / 2	1947	29349	14709

$$Re_{ au} = ar{
ho}_w u_{ au} \delta/ar{\mu}_w; Re_{ heta} =
ho_\infty u_\infty heta/\mu_\infty;
onumber \ Re_{ au}^* = \sqrt{
ho_\infty au_w} \delta/\mu_\infty$$

Michele Cogo

High fidelity simulations of high speed flows for aerospace problems

7

Task #1: Selected Results

The mean velocity profile in a compressible boundary layer can be mapped to an equivalent incompressible distribution by taking into account the variation of mean properties along the boundary layer (ρ , T, etc.)

JNIVERSITÀ

degli Studi di Padova

$$y_I=\int_0^y f_I dy, \quad u_I=\int_0^{ ilde u} g_I d ilde u.$$

 The recent transformations of Volpiani et al. and Griffin et al. yields excellent collapse to the incompressible law of the wall even at higher Reynolds numbers.

Michele Cogo

Task #1: Selected Results

Morkovin scaling for turbulent velocity fluctuations:

$$(u_i^*)^2 = rac{\widetilde{u_i''}}{u_ au^2} rac{ar{
ho}}{ar{
ho}_w}, \quad (uv)^* = rac{\widetilde{u''v''}}{\overline{u_ au^2}} rac{ar{
ho}}{ar{
ho}_w}$$

- The peak on streamwise component increase with Mach number (in accordance with previous studies)
- At high Reynolds and Mach numbers, τ_{22}^+ and τ_{33}^+ have reduced intensities: less efficient turbulent kinetic energy redistribution

Turbulent velocity fluctuations and Reynolds' stress scaled according to Morkovin

More details are present in the recently published paper:

Cogo, M., Salvadore, F., Picano, F., & Bernardini, M. (2022). Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. *Journal of Fluid Mechanics, 945*, A30. doi:10.1017/jfm.2022.574

Task #2: Future work

Boundary layer with sourface roughess:

Tipically high-speed vehicles exhibit regular or irregular patterns of roughness.

Turbulent boundary layers exhibit higher skin friction and mixing, causing increased vehicle drag and heating.

Key questions:

- How does surface roughness affects turbulence near the wall at high speeds?
- What is the effect of <u>Mach number</u> and <u>roughness level</u> in the alteration of drag and heat transfer?

Task #2: Numerical Methods

Preliminary visualization of temperature contours at Mach 7.5 with 2D square bars

Numerical methods

Direct Numerical Simulation:

- Navier-Stokes equations are solved with very high temporal and spatial resolution, down to the Kolmogorov scale
- No model is employed

Immersed Boundary Method:

- Numerical method capable of representing the solid boundary on structured cartesian grids
- Ghost-Point-Forcing Method -> the mesh nodes inside the solid boudary are used as ghost points to give the right boundary conditions (Piquet et al. [2016], De Vanna et al. [2020])

Michele Cogo

Task #3: Future work

Boundary layer with permeable wall

Hypersonic vehicles can take advantage of porous coatings to stabilize the flow or limit the heat transfer with the surface.

Key challegenges:

- Accurately resolve the flow inside the porous media
- Model the possible transpiration in the material
- Simulate the heat exhange between the solid and fluid domain

FIG. 1. Computational domain. (a) smooth wall and (b) porous wall. De Tullio et al. [2010]

Task #3: Future work

Boundary layer with permeable wall

Interesting applications (DNS + IBM) for hypersonic flows in:

- Delaying the laminar-turbulent transition (ultrasonically absorptive coating, Zhou et al. [2020])
- Reducing wall heat transfer by means of gas injection (Zhang et al. [2021], Ifti et al. [2022])

FIG. 1. The flared cone is made of the permeable material PM-35. $\xi - \eta$ represents the body-oriented coordinate, and *x*-*y* represents the Cartesian coordinate. This figure is modified from the work of Zhy *et al.*⁴⁷

Michele Cogo

High fidelity simulations of high speed flows for aerospace problems

Final remarks

Summary of the past and future activities

- Investigation of the physics phenomena related to high-speed turbulent flows using high fidelity methodologies (DNS) on simple geometries.
- Application of high fidelity methodologies (DNS + IBM) on rough surfaces. Investigation of different geometries and Mach number effect.
- Application of high fidelity methodologies (DNS + IBM) on permeable walls. Investigation of possible improvements on heat transfer reduction techniques.

<u>Several other applications are</u> <u>directly related to the research</u> <u>activity!</u>

Publications:

 Cogo, M., Salvadore, F., Picano, F., & Bernardini, M. (2022). Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. Journal of Fluid Mechanics, 945, A30. doi:10.1017/jfm.2022.574

Grants:

 Awarded with the Fulbright Scholarship for a visiting research period at Stanford University

Conferences:

- **33rd Parallel CFD International Conference in Alba, Italy (25-27 May 2022).** Presentation of "DNS of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers with heat transfer" and participation to the seminars.
- 14th European Fluid Mechanics Conference in Athens, Greece (13-16 September 2022).
 Presentation of "Compressibility effects in supersonic and hypersonic turbulent boundary layers at high Reynolds numbers" and participation to the seminars.

Activity plan

WBS				T1		T2		тз		T4		T 1		Т	2		тз		T4			T1		T2	2		ГЗ		Т4	
NUMBER	TASK IIILE	COMPLETE	ο	N D	J	FΝ	I A	MJ	J	Α	s	N C	D	JF	м	Α	м	JJ	Α	S	0	NC) J	F	М	Α	МJ	J	A	S
1	DNS - Attached flows over smooth plates																													
1.1	Analysis of the state of the art	100%																												
1.2	Hypersonic turbulent boundary layer over a flat plate with DNS	100%																												
1.3	Investigation of the non-ideal gas effects in a hypersonic boundary layer	<mark>50</mark> %																												
2	DNS - Attached hypersonic flows over rough plates																													
2.1	Analysis of the state of the art	<mark>50</mark> %																												
2.2	Hypersonic turbulent boundary layer over a rough plate with DNS - simulation setup	20%																												
2.3	Hypersonic turbulent boundary layer over a rough plate with DNS - geometry effect	0%																												
2.4	Hypersonic turbulent boundary layer over a rough plate with DNS - Mach number effe	0%																												
3	DNS - Attached hypersonic flows over porous plates																													
3.1	Analysis of the state of the art	0%																												
3.2	Hypersonic turbulent boundary layer over a porous with DNS - simulation setup	0%																												
3.3	Hypersonic turbulent boundary layer over a porous with DNS - geometry effect	0%																												
3.4	Hypersonic turbulent boundary layer over a porous with DNS - Mach number effect	0%																												
4	Writing thesis and reports	·																												
4.1	Reports for admission to the next year or conferences	<mark>30</mark> %																												
4.2	Writing scientific papers	<mark>30</mark> %																												
4.3	Writing thesis	0%																												

Thanks for the attention

Università degli Studi di Padova