

In-flight calibration and performance verification of the Metis and STC instruments

Chiara Casini - 36th Cycle MEETING FOR THE ADMISSION TO THE THIRD YEAR 05-06/09/2022

INIVERSITÀ

degli Studi di Padova

YES

My PhD activity serves to acquire a deep and detailed knowledge of the Metis and STC instruments in one of the most critical and important phase of a space mission: it's essential to obtain scientific useful images.

Metis of Solar Orbiter

Full Imaging of the corona (1.7 - 9 $\rm R_{\odot})$:

- UV (121.6±10 nm)
- visible light (580-640nm) in total and polarized brightness

Spatial resolution and detector exposure time can change based on the science goal.

The Internal Occulter (IO) is extremely important to minimize the straylight.

1024 x 1024 pixels

STC of BepiColombo

Launch BepiColombo

STC of BepiColombo

SIMBIO-SYS

SIMBIO-SYS is composed by:

•**HRIC** (High Resolution Channel) the goal is the characterization of special surface targets with high resolution:

•400-900 nm spectral range

•6m/px Spatial resolution (at the best)

•VIHI (Visible Infrared Hyperspectral Imaging): the goal is to map the planet in order to provide the global mineralogical composition of the surface:

•400-2000 nm spectral range.

•120 m/px – 480 m/px spatial resolution

• **<u>STC</u>** (STereo Channel) is a double wide angle camera:

- **410-930 nm** spectral range (2 panchromatics filters and 4 broadband filters)
- Total FoV 5.38° x 3.2° (5.38° x 2.31° 5.38° x 0.38°)
- 58 m/px spatial resolution (at best)

G. Cremonese et al. SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission

STC main scientific objective is the global mapping of the entire surface of Mercury in 3D.

The STC camera is able to reach the goal thanks to the two sub-channels: High (H) and Low (L).

- a front unit, which consists of two independent fore-optics modules, one for each subchannel;
- a common telescope unit (off-axis modified Schmidt)

PROCESSED AND COMPARED

On-ground

In-flight (reconstructed)

Simulated

t_{exp}=100s

The centre of the image is changed because we move the IO to minimize the straylight

Raytracing simulation of Metis

A. Liberatore et al., "In-flight calibration of Metis coronagraph on board of Solar Orbiter", Proc. SPIE 11852, International Conference on Space Optics — ICSO 2020, 118525B (2021)

PROCESSED AND COMPARED

Pixel

Chiara Casini In-flight calibration and performance verification of the Metis and STC instruments

UNIVERSITÀ DEGLI STUDI DI PADOVA VERIFIED PERFORMANCES (METIS)

Verification of non degradation: 8 images at 8 different Astronomical distances

The light of the sun is reflected by the shield and, a portion is reflected towards the door.

Boxes of 100 x 100 pixels in the visible channel 4 fitting curves.

- we can use the retro-reflection of the door to estimate the optical elements possible degradation
- we can predict the effects of the possible degradation on the door images via ray tracing simulations.

Chiara Casini

In-flight calibration and performance verification of the Metis and STC instruments

VERIFIED PERFORMANCES (STC)

Dark current acquisitions campaign:

- the acquisition of a set of 10 dark-current images
- for a specific Integration Time (IT)
- with a specific Repetition Time (RT)

STC detector composed by:

- > 2 Panchromatic (PanL and PanH)
- ➤ 4 colored filters (f750, f420, f920 and f550)

Start-End R	lows				Vert Dim
2	016	576px (strip 9)		1471px (strip 22)	
			F920		64px
1	953				
1	808				
					64px
1	745				
1	610				
			PANL		
					384px
1	227				
	820				
			PANH		
					384px
	437				
	303				
192:319			F420		64px
(strips 3.4)					
163 Min¥	240				
100	95				
			F750		64px
(0,0)	32		896px		

SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission, G. Cremones Space Sci Rev (2020) 216:75 https://doi.org/10.1007/s11214-020-00704-8e

Mean value of the dark signal intensities acquired through the filter f750, f420, f920 and f550 at different exposure time.

One possible solution is considering a small window named windows-x (WINX). It is a out-of-filter window, which is a region on the detector of dimension 64x128px sitting in the unilluminated part of the detector

detector

Chiara Casini

Università degli Studi di Padova

VERIFIED PERFORMANCES (STC)

4400

4200

The thresholds for designating a pixel as "bad" were set to 3σ above or below the mean as appropriate.

Therefore, I calculate for every image its histogram.

For Normally (Gaussian) distributed data only 0.3% of the pixels values would lie outside the mean $\pm 3\sigma$ range

Take all value beyond mean ± 3σ

- Lookup table (LUT): on each image analysis an increment of 1 on bad pixel coordinates
- Divide for the 10 (number of the images)
- bad pixel on all images has the value of 1 on LUT (white)

Chiara Casini

13

Chiara Casini

UNIVERSITÀ DEGLI STUDIANALYZE THE DATA TO COMPLETE THE CHARACTERIZATION TEST DI PADOVA

1222+2022

UNIVERSITÀ DEGLI STUDIANALYZE THE DATA TO COMPLETE THE CHARACTERIZATION TEST DI PADOVA

0,0096 s

0,27 s

Acquisitions are now taken with the same intervals and times to understand if they are replicable and therefore correctable!

Chiara Casini

TACKTITIE	% OF TASK		T1			T2			Т3			T4			1		T2			Т3		1	4		Т	1		T2			T3			T4	
TASKTITLE	COMPLETE	0	N	D	J	F	м	A	м	J	J	A	s c		I D	J	F	М	Α	м	J	J	A . 9	5 0) N	D	J	F	М	Α	м	J	J	A :	s
Commissioning phase																																			
Review of state of the art of the Metis and STC	100%																								1						1 1				
Calibration actvities: comparison with on ground results	80%																								1										
Optical performances	80%																																		
Cruise Phase																																			
Calibration sequence planning	70%																																		
Performances validation	75%																																		
Straylight	80%																																		
Data Analysis and results																																			
Calibration input for the pipeline	1%												1																						
Support to pipeline implementation	1%													Ĩ.																					
Phd Thesis Writing																																			
<u></u>	1%																													-					

Thanks for the attention

Università degli Studi di Padova

