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➢ RESEARCH BACKGROUND

➢ PROJECT OBJECTIVES

➢ WORK METHODOLOGIES AND TOOLS
➢ Peridynamic Theory
➢ Classical continuum mechanics-peridynamics coupling strategy

➢ TASKS COMPLETED IN THE SECOND YEAR OF PhD COURSE

➢ MODELLING OF HIGH SPECIFIC STIFFNESS MATERIALS PROPERTIES

➢ FUTURE WORK

➢ LIST OF PUBLICATIONS
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MAJOR CHALLENGES
↓

Understanding of fracture phenomenon and damage 
initiation and evolution mechanism

↓
Development of innovative computational methods for 

material properties characterization
and damage prediction

↓
Achievement of an accurate description of large and 

complex structures

Example of a crack in an aircraft fuselage

10-11/09/2020

Need to develop lighter and more efficient components 
for aircraft structures

↓
Composite and nanocomposite materials

Among them, polymeric composites reinforced with 
nanoscale reinforcements have recently attracted a 

tremendous attention 
↓

They exhibit enhanced mechanical, thermal, and barrier 
properties

BENEFITS
↓

Reduction of airplane mass and fuel consumption
↓

Downturn in the costs and in carbon emissions

MAIN PROBLEM
↓

Unavoidable presence of cracks in aeronautical and 
aerospace structures
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I. Study of CCM-PD coupling methods: equipping of CCM based models with the

capability to simulate crack formation and propagation

II. Improvement of the in-house CCM-PD coupling software for possible integration

into a reliable structural integrity assessment system

III. Study of wave propagation features and numerical modelling techniques

IV. Development of PD based computational tools for nanocomposites mechanical

properties prediction

V. Validation of numerical simulations through experimental activities

CCM = classical continuum mechanics
PD = peridynamics

10-11/09/2020



Admission to Third Year 5/14

Nonlocal reformulation of classical continuum mechanics (CCM) based on integro-differential equations

Two versions of the theory → bond-based (BB) version and state-based (SB) version

The state-based PD equation of motion for any material point x ∈ 𝑹 is given by:

Each point x in the body interacts with all the points 
located within its neighbourhood Hx through bonds

where:

- ρ is the mass density
- x is a material point of the domain R

- Hx is the finite neighbourhood centred at point x
- δ is the horizon radius
- u is the displacement vector field
- b is a prescribed body force density field
- 𝑻[𝒙, 𝑡] 𝒙′ − 𝒙 is the force density vector that point x′ exerts on point x

𝜌 𝒙 ሷ𝒖 𝒙, 𝑡 = න
𝑯𝒙

{𝑻[𝒙, 𝑡] 𝒙′ − 𝒙 − 𝑻[𝒙′, 𝑡] 𝒙 − 𝒙′ }𝑑𝑉𝒙′ + 𝒃(𝒙, 𝑡), 𝒙′ ∈ 𝑯𝒙
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The relation between SB-PD models and BB-PD models is given by:

Pairwise force function in BB-PD theory

ξ = 𝐱′ − 𝐱 is the relative position vector
η = 𝐮′ − 𝐮 is the  relative displacement vector



Admission to Third Year 6/14

In nonlocal theories the boundaries are fuzzy
↓

Defining boundary conditions introduces some 
difficulties

It is common practice to couple meshfree discretized 
PD models with CCM models discretized using the FEM

➢ PD grids applied only to portions of the domain 
where cracks are likely to develop 

↓
The remaining part is modelled with 

the more efficient FEM

➢ FEM can be used at the boundaries
↓

All PD nodes have a fully internal family
↓

Solution to the “surface problem” of PD

SOLUTION
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Weak points of peridynamic numerical 
methods

PD is a nonlocal theory 
↓

Bandwidth of the stiffness matrix in PD is bigger than 
that in CCM

↓
PD is computationally very expensive

↓
Its application in large-scale, geometrically complex 

simulations is hindered

Coupling of peridynamics and classical 
continuum mechanics
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The coupling method can be introduced with the help of 
a 1D model

Internal forces acting on a node are of the same nature as the node itself

A coupling zone is defined where forces are exchanged between the FEM
and PD parts of the domain

Equilibrium equations of FEM (PD) nodes contain only terms coming 
from the FEM (PD) formulation

- 𝑎 ≔ Τ𝐸𝐴 ∆𝑥, b≔ 𝑐𝐴2∆𝑥
- 𝐸𝐴 = product between Young’s modulus 𝐸 and cross-sectional area 𝐴
- ∆𝑥 = grid spacing of the discretized numerical model
- 𝑁 = total number of nodes
- 𝑢𝑖 𝑖=1,…..,𝑁 = nodal displacements,  𝑓𝑖 𝑖=1,…..,𝑁 = external nodal forces
- c = micromodulus constant

This 1D coupled model produces the following system of 
equations:
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➢ TASK 1: Bibliographic research on peridynamics and nanocomposites State of Art
➢ CCM-PD coupling strategies and coupled Multiphysics problems
➢ Nanocomposites morphologies, mechanical properties, and main features
➢ Numerical modelling tools for the prediction of nanocomposites mechanical properties
➢ Experimental techniques for the characterization of nanocomposites mechanical properties

➢ TASK 2: Investigation and improvement of the CCM-PD coupling software developed at the UniPD
➢ Theoretical and numerical analysis of the consistency between linear BB-PD and CCM models
➢ Theoretical and numerical analysis of the out-of-balance forces in coupled CCM-PD models
➢ Preliminary analysis of the effect of the shape of the coupling interface on the overall equilibrium

➢ TASK 3: Development of PD based numerical tools for nanocomposites mechanical properties prediction
➢ Preliminary implementation of a hierarchical multiscale approach based on a 2D BB-PD model

➢ TASK 4: Development of PD based numerical tools to model crack propagation in nanocomposite materials
➢ Preliminary implementation of a PD based multiscale approach to simulate crack propagation and branching

➢ TASK 5: International collaborations
➢ Dr. Pablo Seleson (Oak Ridge National Laboratory, US): drafting and publication of a manuscript

10-11/09/2020



10-11/09/2020 Admission to Third Year 9/14

Nanocomposites are multicomponent materials comprising different phase domains in 
which at least one of the phases has at least one dimension on the order of nanometers

Polymeric composites reinforced with nanoscale reinforcements have attracted a 
tremendous attention, since they exhibit enhanced mechanical properties

Clay nanoparticles are the best candidates to strengthen polymers, due to their 
mechanical properties, high aspect ratio, high availability and low-cost production

By adding low concentrations of clay platelets, the polymer matrix becomes highly 
restrained mechanically

↓
A significant portion of the applied load is carried by the fillers

↓
Significant enhancements of tensile modulus and strength
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Implementation of a PD hierarchical multiscale approach for 
the prediction of the overall mechanical properties of PCNs

The mechanical analysis is performed on a mesoscale 
Representative Volume Element (RVE) 

From this medium-scale analysis, the homogenized effective 

properties of the nanocomposite are extrapolated

The geometrically periodic RVE is a sample which is 

structurally typical of the whole blend on average

The random heterogeneity of the RVE domain is modelled by 

selecting the most feasible probability distribution function 

for each random characteristic parameter in the model
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Capability to easily simulate the interphase region between matrix and nanoplatelets, 
and the nanoclay agglomeration by tuning the properties of the PD bonds

The use of PD avoids the issues related to the high aspect ratio of nanoplatelets, 

which bring FEM meshing problems because of distorted elements

↓

Possibility to simulate high aspect ratio platelets values (i.e., AR = 1000)

Possibility to simulate weak interfacial adhesion or interfacial debonding through 
“weakened” PD bonds or bonds breakage

Capability to model crack propagation and branching phenomena
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➢ TASK 1: Further development of the PD based numerical method for nanocomposite materials analysis
➢ Extension of the PD based hierarchical multiscale approach for mechanical properties prediction
➢ Extension of the PD based multiscale strategy to model crack propagation and branching

➢ TASK 2: Validation of numerical simulations through experimental activities
➢ Tensile and fracture testing, use of Environmental Scanning Electron Microscopy (E.S.E.M.) and of

Transmission Electron Microscopy (TEM)
➢ Collaboration with Prof. R. Bertani, Department of Industrial Engineering (DII) – University of Padova

➢ TASK 3: Study of Multiphysics phenomena and implementation in FEM commercial codes
➢ Simulations on Multiphysics problems involving diffusion phenomena

➢ TASK 4: Implementation of the adaptive refinement/coarsening approach
➢ Implementation of the adaptive refinement approach for multi-dimensional analyses 
➢ Further collaboration with Dr. P. Seleson, Oak Ridge National Laboratory, US

➢ TASK 5: Writing of PhD thesis
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Journal paper:
G. Ongaro, P. Seleson, U. Galvanetto, T. Ni, M. Zaccariotto, Overall equilibrium in the coupling of peridynamics and classical continuum mechanics,
Accepted for publication in Computer Methods in Applied Mechanics and Engineering (2021)

Conference contributions:
CFRAC2019 Germany
Overall structural equilibrium in Computational Methods Coupling Peridynamics with Classical Mechanics
M. Zaccariotto, T. Ni, G. Ongaro, P. Seleson, U. Galvanetto

USNCCM15 Austin
Global Equilibrium in Computational Methods Coupling Peridynamics with Classical Mechanics
U. Galvanetto, T. Ni, G. Ongaro, P. Seleson, M. Zaccariotto

ICCM2019 Singapore
The Problem of Static Equilibrium in Computational Methods Coupling Classical Mechanics and Peridynamics
U. Galvanetto, T. Ni, G. Ongaro, P. Seleson, M. Zaccariotto

SIPS2019 Paphos, Cyprus
Is coupling PD with FEM the way forward to solve in an efficient way crack propagation problems?
U. Galvanetto, T. Ni, G. Ongaro, P. Seleson, M. Zaccariotto

IMECE2020 Portland, Oregon
Overall Equilibrium in the Coupling of Peridynamics and Classical Continuum Mechanics
P. Seleson, G. Ongaro, U. Galvanetto, T. Ni, M. Zaccariotto

AIDAA 2019
Computational methods coupling peridynamics with classical mechanics: out-of-balance forces in overall structural equilibrium
M. Zaccariotto, G. Ongaro, T. Ni, P. Seleson, U. Galvanetto
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𝜌𝒖ሷ 𝑖
𝑛 =
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𝑗

 𝒇(𝒖𝑗
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𝑗

𝛽(𝝃)𝑽𝑗 + 𝒃𝑖
𝑛 ,   𝑓𝑜𝑟 𝐵𝐵 − 𝑃𝐷

  ,∀𝒙𝑗 ∈ 𝐻(𝒙𝑖) 

Representation of a generic horizon in a discretized 
form. ∆𝒙 is the grid spacing of the discretized model. 

𝒎 = Τ𝜹 ∆𝒙 = 𝟑 in the figure 

The domain is discretized into a grid of points called nodes, each with a known volume (V) in the reference configuration

The method is meshfree → no geometrical connections between the nodes

where:

- 𝑛 is the time step
- subscripts 𝑖, 𝑗 denote the node number (e.g., 𝒖𝑗

𝑛 = 𝒖(𝒙𝑗 , 𝑡𝑛) )

- 𝛽(𝝃) is a correction factor used to evaluate the portion of 𝑽𝑗 that falls within the       

neighborhood of the source node 𝒙𝑖

The discretized form of the SB-PD and BB-PD equation of motion can be written as:
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For problems involving wave propagation, peridynamics can suffer from anomalous wave dispersion phenomena
↓

This is the case when the ratio between the horizon 𝛅 and the wavelength 𝛌, i.e., Τ𝛅 𝛌, is not small enough

Example of wave propagation and perturbations in a 1D system discretized using (a) FEM and (b) PD. In the example, E=1, ρ=1, A=1, 𝛅=0.031, λ=0.2, and Τ𝛅 λ = 0.155 in consistent units

(a) FEM

(b) PD

t = 0.2 [s] t = 0.4 [s] t = 0.6 [s] t = 0.8 [s] t = 1.0 [s]
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Strategies to improve the dispersion properties of PD

𝜹 ≪ 𝝀
↓

PD can accurately simulate wave 
motion if the ratio Τ𝛅 𝛌 is small

DRAWBACKS

➢ Computationally very expensive

➢ Implementation for large-scale, 
geometrically complex, realistic

structures is difficult

Modification of the pairwise force function (f) by 
introducing weight coefficients to improve the accuracy 

of the dispersion relation

BENEFITS

No need to satisfy 𝜹 ≪ 𝝀
↓

Possibility to use a larger 𝜹

DRAWBACKS

Negative weight coefficients could lead to numerical 
instability when dealing with crack propagation

Implementation of Fourier spectral 
methods for peridynamic models

DRAWBACK

Still under development


