Morphological and compositional analysis of boulders distributions on comet 67P/Churyumov-Gerasimenko

PhD Candidate: Pamela Cambianica

Supervisor: Giampiero Naletto

Co-Supervisor: Gabriele Cremonese

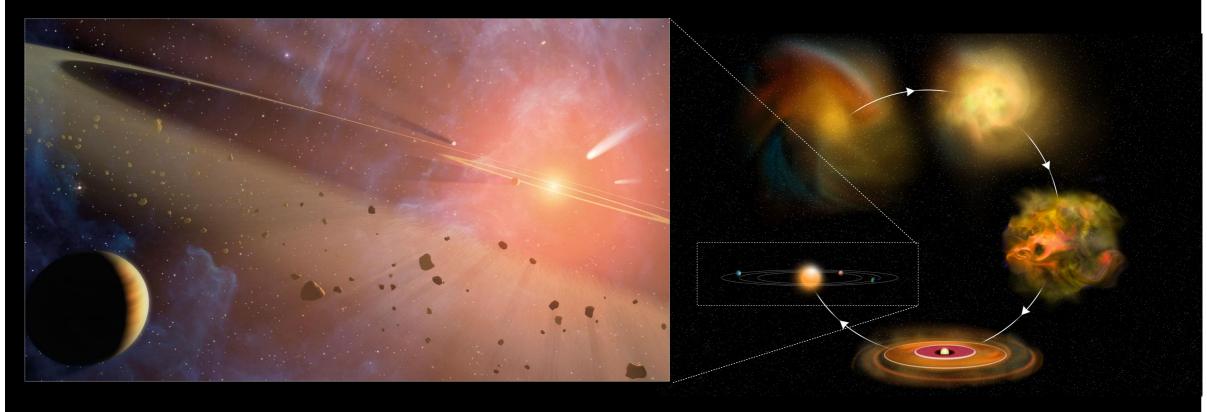
Admission to the final exam

Colombo" - CISAS

13 September 2019 Centro di Ateneo di Studi e Attività Spaziali "Giuseppe

Outline

- Origin of Comets
- Overview The Rosetta Mission
 - Comet 67P/Churyumov-Gerasimenko
- ✓ Fragmentation and Fractals. The case of isolated boulder fields on comet 67P
- ✓ Time Evolution of Dust in the Hapi Region
- ✓ Thermal and Stress Analysis in Boulders of Comet 67P
- Conclusions
- ✓ Future Works
- ✓ List of Publications



Overview - Origin of Comets

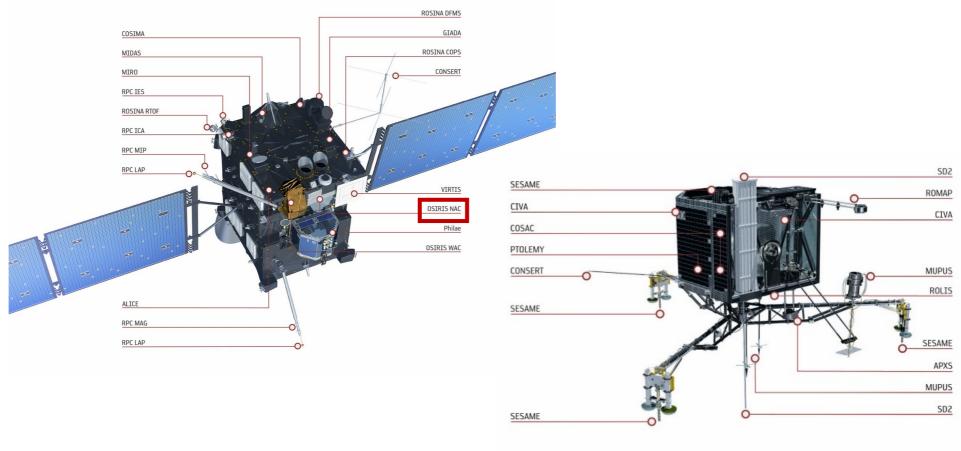
Why are comets and asteroids so important for the understanding of the Solar System formation?

Comets and asteroids are leftovers of the Solar System formation

Overview - The Rosetta Mission

2 March 2004 Launch

10-years journey towards comet 67P


2867 Steins (2008) 21 Lutetia (2010)

June 2011 Hybernation mode

6 August 2014 Arrival of comet

12 November 2014 Philae landing

30 September 2016 End of the mission The first mission designed to orbit and land on a comet

Overview - OSIRIS

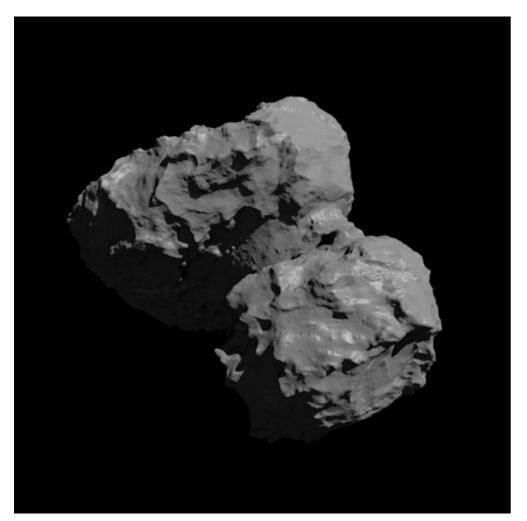
Optical, Spectroscopic and Infrared Remote Imaging System (OSIRIS)

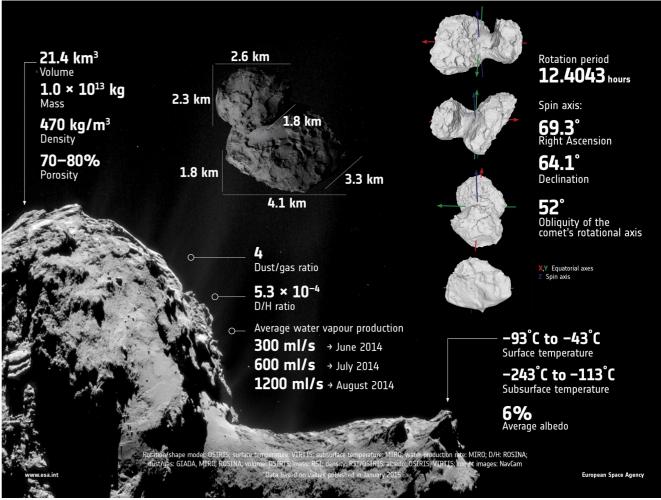
Wide Angle Camera

Narrow Angle Camera

	NAC	WAC
Optical design	3-mirror off-axis	2-mirror off-axis
Angular resolution [μrad px-1]	18.6	101
Focal length [mm]	717.4	140 (sag)/131 (tan)
Mass [kg]	13.2	9.48
Field of view [°]	2.20 - 2.22	11.35 - 12.11
F-number	8	5.6
Spatial scale from 100 km [m px-1]	1.86	10.1
Typical filter bandpass [nm]	40	5
Wavelength range [nm]	250 - 1000	240 - 720
Number of filters	12	14

Mission


To image the comet's nucleus and its gas and dust coma



Overview - Comet 67P/Churyumov-Gerasimenko

Overview - Comet 67P/Churyumov-Gerasimenko

Huge variety of terrains

- Smooth
- Hummocky
- Partially or entirely covered by dust

Morphological dicothomy

Huge variety of landforms and features

- Smooth flat planes
- Vertical cliffs
- Talus aprons
- Pits
- Boulders

Objectives

Boulders

Opportunity to study the physical properties and the evolution of the comet

Imprints of geological and erosional processes that affected the surface

To study phenomena responsible for the **fragmentation** of the surface

Thermal stress weathering Gravitational phenomena Activity

Fragmentation and Fractals. The case of isolated boulder fields on comet 67P

Fragmentation and Fractals. The case of isolated boulder fields on comet 67P

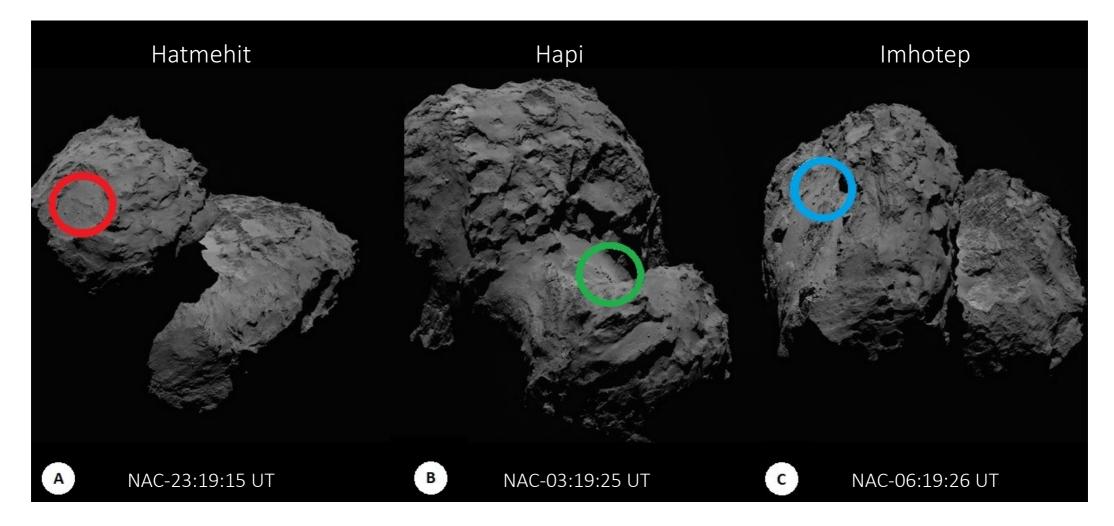
Astronomy & Astrophysics manuscript no. 34775 June 25, 2019 ©ESO 2019

Quantitative analysis of isolated boulder fields on comet 67P/Churyumov-Gerasimenko

P. Cambianica¹, G. Cremonese², G. Naletto^{1,5,6}, A. Lucchetti², M. Pajola², L. Penasa¹, E. Simioni², M. Massironi^{4,1}, S. Ferrari¹, D. Bodewits¹⁴, F. La Forgia³, H. Sierks⁷, P. L. Lamy⁸, R. Rodrigo^{9,10}, D. Koschny¹¹, B. Davidsson¹², M. A. Barucci¹³, J.-L. Bertaux⁸, I. Bertini³, V. Da Deppo⁶, S. Debei¹⁵, M. De Cecco¹⁶, J. Deller⁷, S. Fornasier¹³, M. Fulle¹⁷, P. J. Gutiérrez¹⁸, C. Güttler⁷, W.-H. Ip^{20,21}, H. U. Keller^{22,19}, L. M. Lara¹⁹, M. Lazzarin³, Z.-Y. Lin²⁰, J. J. López-Moreno¹⁸, F. Marzari⁵, S. Mottola¹⁹, X. Shi⁷, F. Scholten¹⁹, I. Toth²³, C. Tubiana⁷, and J.-B. Vincent¹⁹

(Affiliations can be found after the references)

Received 4 December 2018 / Accepted 7 June 2019

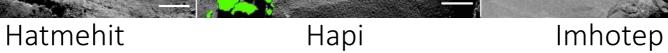

To characterize isolated boulder populations unrelated to specific niches or detachment scarps

Data Selection

Data Selection

Pre-perihelion

11811 boulders


Size-frequency distribution

Cumulative fractional area

Fractal theory

Shape factors

Post-perihelion

SIZE-FREQUENCY DISTRIBUTION

The SFD of rocks on surfaces can supply geological information related to the body's origin and evolution

-6.5 < D <-5

Collapses and pit formation

Gravitational events due to thermal fragmentation

Gravitational events + sublimation and in-situ fragmentation

CUMULATIVE FRACTIONAL AREA

The CFA covered by rocks vs diameter curve is represented in a log-log plot.

Usually, the distribution is fitted by an exponential equation

$$F(\geq D)=ke^{-q(x)D}$$

F(D) is the CFA covered by rocks of diameter D or larger

k is the total area covered by all rocks

q(x) governs how abruptly the area covered by rocks decreases with increasing diameter

Method - Results

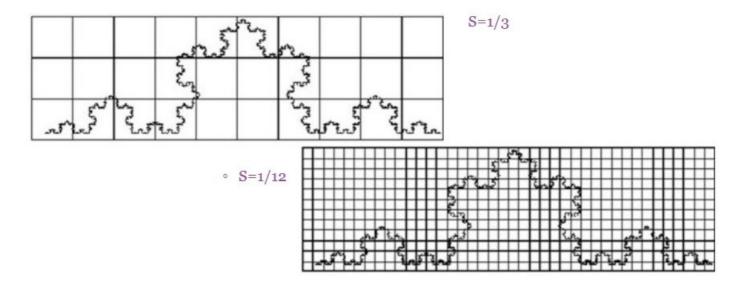
SIZE-FREQUENCY DISTRIBUTION

Region	D
	()
Hatmehit pre	-2.7
Hatmehit post	-2.8
Hapi pre	-1.7
Hapi post	-1.2
Imhotep pre	-2.4
Imhotep post	-2.4

-6.5 < D <-5
Collapses and pit formation
-4.5 < D <-3.5
Gravitational events
due to thermal fragmentation
-2.0 < D <-1.0
Gravitational events +
sublimation and in-situ
fragmentation

CUMULATIVE FRACTIONAL AREA

Region	Trend line	R^2
Hatmehit pre	$y=0.0632x^{-0.792}$	0.9942
Hatmehit post	$y=0.0594x^{-0.639}$	0.9875
Hapi pre	$y=0.0648 x^{-0.179}$	0.9120
Hapi post	$y=0.0556x^{-0.150}$	0.8545
Imhotep pre	$y=0.0697 x^{-0.364}$	0.9945
Imhotep post	$y=0.0548 x^{-0.378}$	0.9910


Fractal Theory - Boxcount

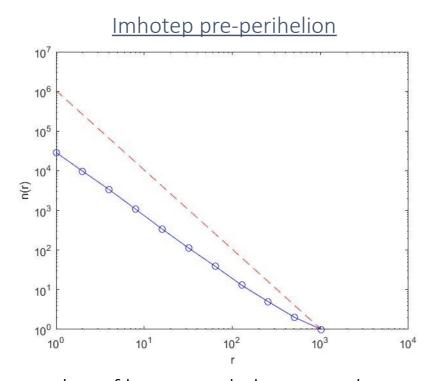
The size distribution of material expected from fractures and fragmentation would allow a fractal rule

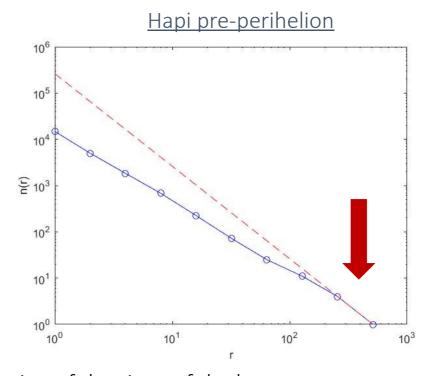
(Mandelbrot, 1982)

BOXCOUNT METHOD

Analysis of a complex 2D pattern by breaking an image into smaller pieces, and analyzing the pieces at each smaller scale

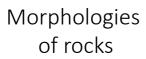
How many boxes are required to cover the image?


Calculation of the Minkowski-Bouligand dimension seeing how this number changes as the grid became finer


$$D_f = \lim_{r \to 0} \frac{\log(N(r))}{\log(1/r)}$$

Fractal Theory - Results

 $\mathbf{n(r)}$ = number of boxes needed to cover the set as a function of the size \mathbf{r} of the boxes **Solid line** = power-law $N(r) = N_o r^{Df}$. It should appear if the set is fractal **Dotted line** = it appears showing the scaling $N(r) = r^{-2}$ for comparison, expected for a space-filling 2D image


The discrepancy between the two curves indicates a possible fractal behavior of the image

Boulders Shape

Records on rock surface processes

- Lithology of the mass
- Transport mechanisms
- Weathering history

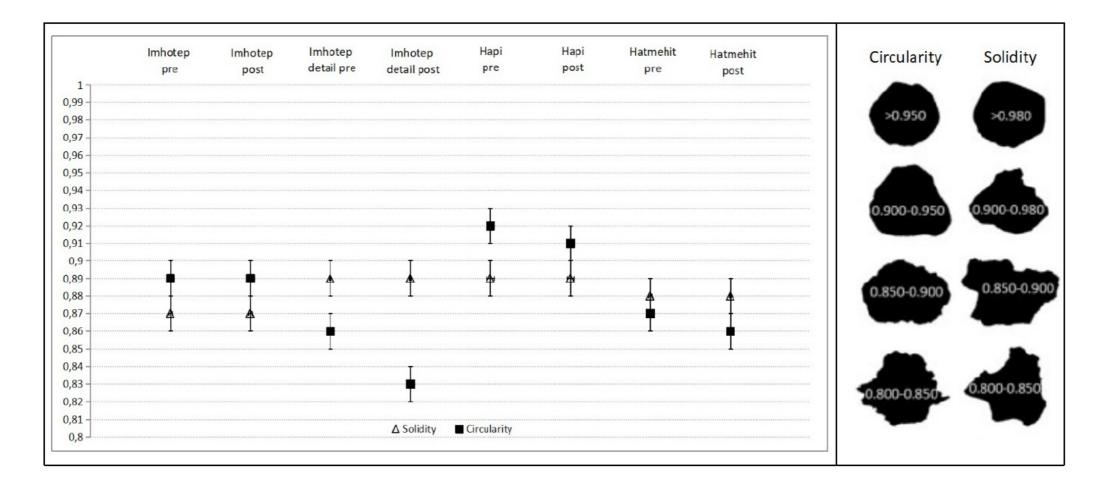
Shape factors

Dimensionless quantities calculated from measured dimension, such as diameter, area, perimeter, etc.

Aspect Ratio Circularity Roundness Compactness Elongation Solidity Complexity Convexity Feret's diameter

2D-test

3D-test



Boulders Shape - Results

Conclusions

- We propose techniques to analyse populations of boulders
- No differences before and after the perihelion
- Anomalies

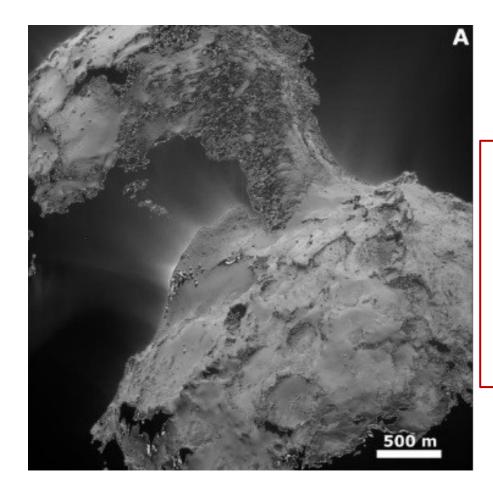
Hapi area

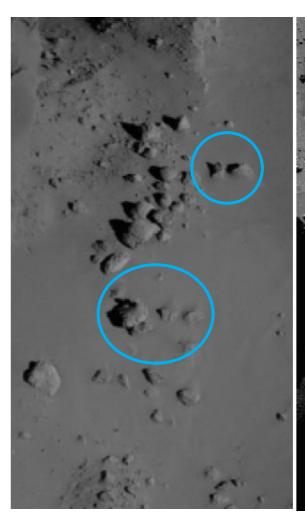
Boulders are collapsed during gravitational events and their fragmentation in-situ is controlled by thermal fatigue

These boulders would represent the tops of outcrops, immersed in a deposit of back fall material several tens of meters thick

(Keller et al. 2017)

- The heat flux density received during the perihelion passage is not enough to change the examined populations
- There could have been changes, but the erosion was uniform and the shape parameters can only distinguish differential erosion.


Time Evolution of Dust in the Hapi Region



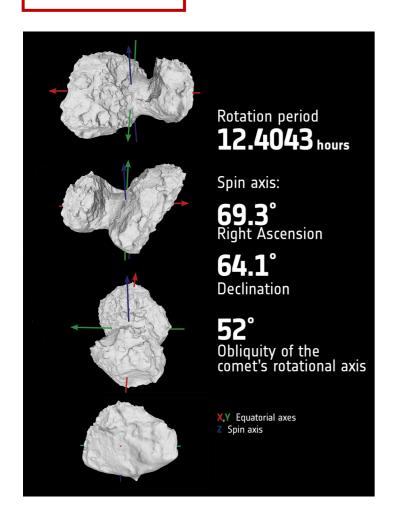
Time Evolution of Dust in the Hapi Region

JETS

22 August 2014 and 14 March 2015

(Shi et al. 2018)

10 Dec 2014 06:29



Mass Transfer

Comet 67P experiences strong seasons, resulting in significant differences in insolation between the northern and southern hemispheres. This strong dichotomy is reflected in the morphology between the two hemispheres.

Northern regions

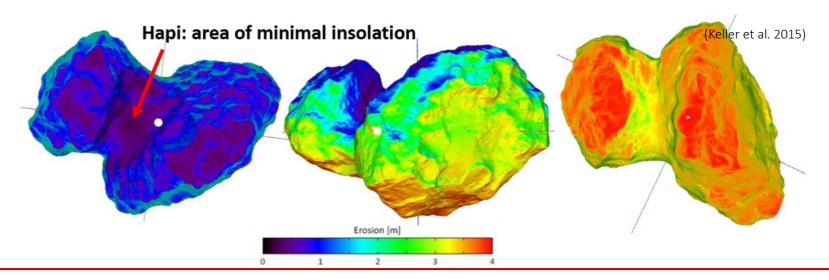
Southern regions

Minimal amount of insolation and erosion

Southern summer = perihelion Strong insolation Strong erosion

FULLY COVERED OF DUST

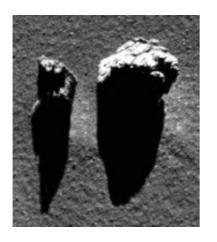
CONSOLIDATED AND COARSE
TERRAINS

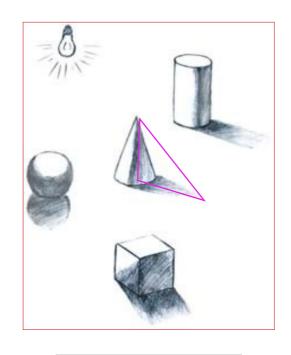


Mass Transfer

The dust cover in the northern regions can be the result of transport mechanisms of particles from the southern hemisphere during the southern summer.

The erosion of the southern hemisphere, the subsequent transport of material, and then its fallout on the nucleus, are fundamental to investigate the pristine water ice abundance comet 67P, assuming that 67P's ice content is representative of the average value of all comets.

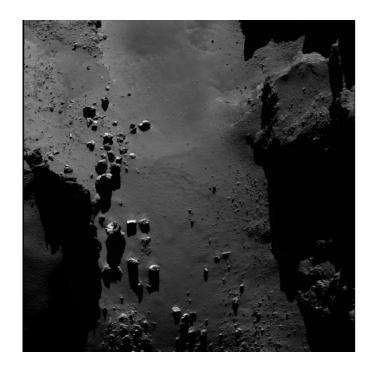


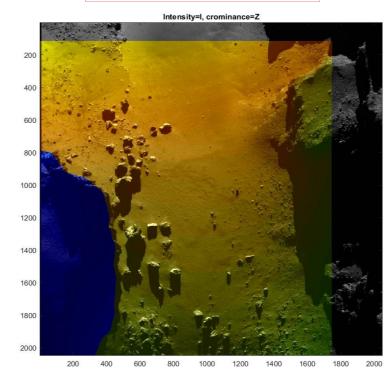


Dust Erosion and Deposit

MATLAB Software

Height of boulders through the length of shadows can improve the knowledge of the erosion and deposit variation of the dust on the comet surface


$$H = L \tan \left(\frac{\pi}{2} - i\right)$$


MATLAB Software

Selection of the image

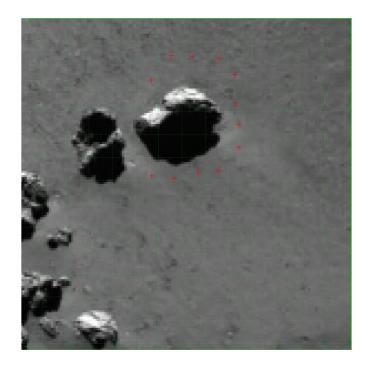
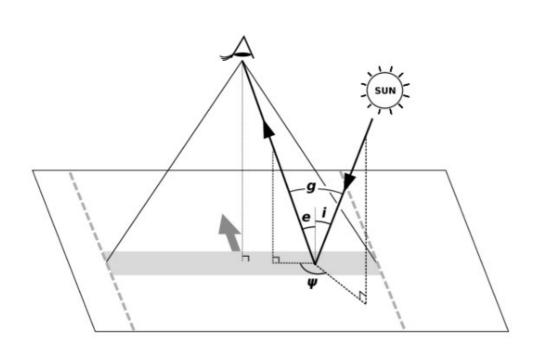

10 December 2014 06:29:11

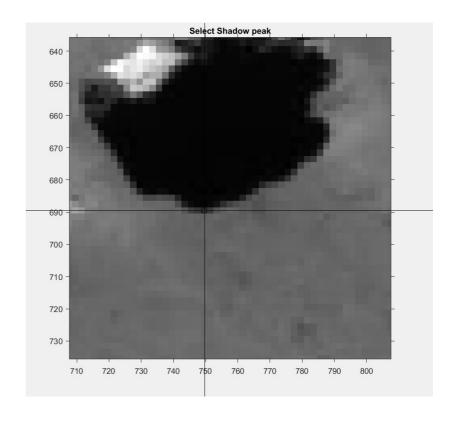
Image alignment

To obtain the correct projection of the OSIRIS images on the 3D shape model

Local Surface Definition

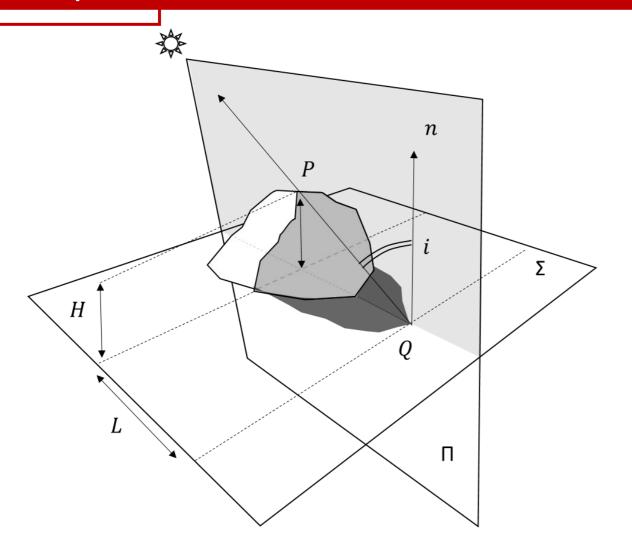
To avoid the local granularity

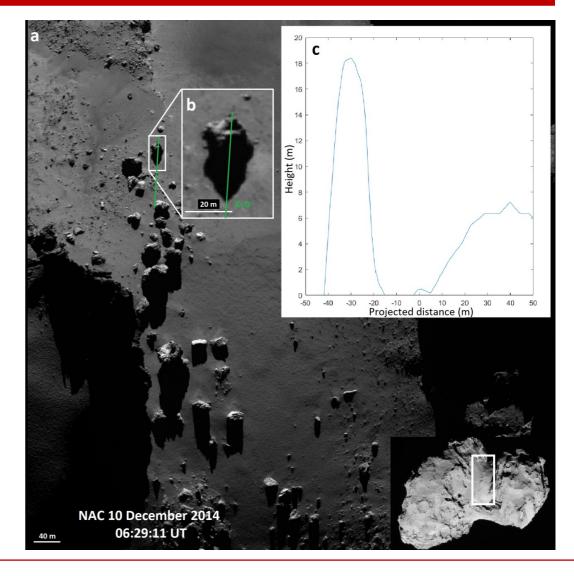




MATLAB Software

Incidence Angle


Peak of the Shadow

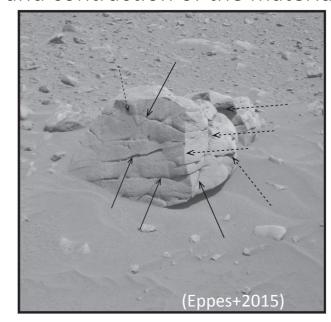


Output

Thermal and Stress Analysis in Boulders of Comet 67P

Thermal Stress Weathering

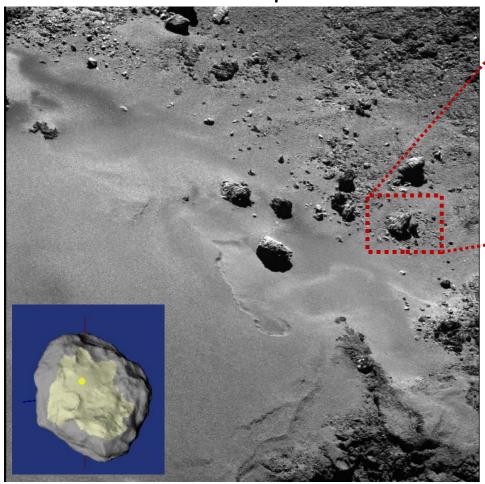
"Rock breakdown due to the expansion and contraction of a rock induced by heating and/or cooling" (Lamp+2016)


Thermal shock

Rapid failure in the material as a result of a sudden ΔT

Thermal fatigue

Cyclic thermal expansion and contraction of the material

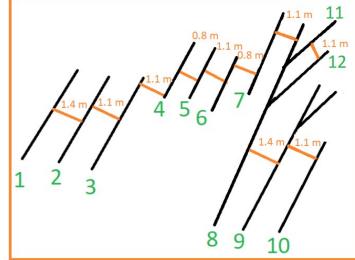


Data Selection

Imhotep

1+ 350 fragments

Spatial scale: 0.28 m/px Diameters: 0.3-8.3 m


Power-law: -2.7 +0.1/-0.2

Average: 1.4 m

(Cambianica et al., 2019)

Average spacing: 0.98 m Length: 3.8 < m < 26.6 Preferred cracks orientation

- Non-random
- Strong north-south orientation

NAC_2016-07-09T11.25.15.786Z_ID30_1397549000_F41

Workflow

Boundary conditions

Solar irradiance (W/m²)

(Keller+2015)

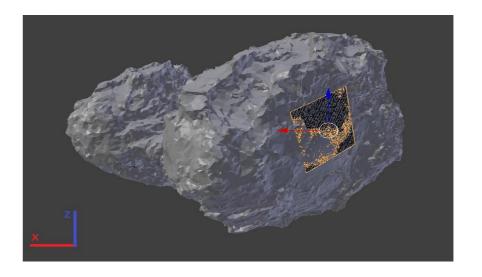
- ✓ Temperature variation within a boulder
- ✓ Maximum tensile stress (MPa)

FEM Software

Whether the modeled maximum

→ tensile thermal stresses are sufficient


to cause crack propagation



Geometry and Mesh

- Geodesic polihedron (40 m size boulder)
- Cubic volume (1 km x 1 km x 1 km)
- z-axis // rotating axis of the comet
- Two different meshes
- Thermal contact
- Controlled by the physics

Material Selection

<u>Nucleus</u>

organic components + minerals + water ice

- COOH- and OH groups
- polycyclic aromatic hydrocarbons
- refractory macromolecular material (CH₂ and CH₃)

(Filacchione+ 2019)

Graphite

Carbon

Thermal inertia

10-50 K m⁻² s ^{-0.5}

(Gulkis+ 2015)

Conclusions

Method to analyze isolated boulder fields on comet 67P/Churyumov-Gerasimenko

New tool to measure and monitor the erosion and fallout on comet 67P/Churyumov-Gerasimenko Thermomecanical model
to simulate thermal
stresses of boulders
on comet
67P/ChuryumovGerasimenko

Shape factors

Pristine 67P's ice content

Sunrise ans sunset are responsible for thermal fragmentation

Future Works

Global map of dust erosion/accretion - Application of the method in other regions

We will model temperature and stresses including a regolith layer with variable thickness to understand the rule of this layer in terms of

thermal conduction and

cracks propagation

Thermomechanical model

We will apply the Cheng and Vachon theory (1968) to calculate the thermal conductivity of two- and three-phase solid heterogeneous mixtures.

We will perform the simulation over the entire orbit of the comet to include in our study the thermal fatigue, and to determine the number of orbits necessary for the fragmentation of the surface.

List of Publications

<u>First-authored peer reviewed papers</u>

"Quantitative analysis of isolated boulders fields on comet 67P/Churyumov-Gerasimenko", A&A Rosetta 2 special issue, June 2019

"Comets and carbonaceous chondrites share a similar water content", Science Advances, Submitted

Co-authored peer reviewed papers

"The rocky-like behavior of cometary landslides in 67P/Churyumov-Gerasimenko", Lucchetti A. et al. 2019, JGR, Submitted

"Spectrophotometric variegation of the layering in comet 67P/Churyumov-Gerasimenko as seen by OSIRIS", Tognon G., et al. 2019, A&A, Rosetta 2 Special Issue

"Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov-Gerasimenko", Pajola, M. et al. 2019, Volume 485, Issue 2, p.2139-2154

"The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta", Bertini I. et al. 2019, MNRAS, Volume 482, Issue 3, p.2924-2933

"The big lobe of 67P/Churyumov-Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data", Ferrari, S. et al. 2018, MNRAS, Volume 479, Issue 2, p.1555-1568

List of Publications

Conferences

"Bouncing boulders on comet 67P", Vincent J-B et al. 2019, EPSC/DPS

"Sample return from a relic ocean world: The CALATHUS mission to Occator Crater, Ceres", IPPW 2019

"Geomorphological units of Khepry and Imhotep regions of comet 67P/Churyumov-Gerasimenko", Ferrari S. et al. 2018, EPSC

"3DPD application to the first CaSSIS DTMs", Simioni, E. et al. 2018, EPSC

"Thermal analysis of boulders on comet 67P/Churyumov-Gerasimenko", Cambianica et al. 2018, EPSC

"Quantitative analysis of Imhotep, Hapi and Hatmehit boulder populations on comet 67P/Churyumov-Gerasimenko", Cambianica et al. 2019, Congresso Nazionale di Scienze Planetarie

"Fragmentation processes on the 67P/Churyumov-Gerasimenko surface from the OSIRIS images" Cambianica et al. 2016, From Giotto to Rosetta

Thanks for the attention

Pamela Cambianica pamela.cambianica@gmail.com

