Neck Protection Development & a Proposal of the Associated Standard for the Motorcyclists'

Meeting for admission to the final exam 14th September, 2018 – CISAS (Padova)

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° 608092 for the project MOTORIST.

MOTORIST Consortium

Università degli Studi di Padova

http://www.motorist-ptw.eu

Phase I: training	g on existing PPE	Phase II: design and develop new PPE				
Testing the state of the art	New test methods	Functional requirements	Design and develop new PPE			
Review state of the art	Review injury biomechanics	Review phase I	Design / CAD			
Review current technical standards	Technical standards vs injury biomechanics	Review accident statistics	Simulation (FEA)			
Materials tests (physical,	Design and validate new test	State of the art vs accident statistics	Prototyping			
simulated)	methods	Functional requirements specification	Test aginst current and novel test methods			
Guideline for material choice in current PPE	Guideline for better test methods	Decide which body part to protect, how	New PPE Functional Prototype			

Standards

Impact analysis

European Standards

GARMENTS // EN 13595 // prEN 17092

PRAMA

BOOTs // EN 13634

GLOVEs // EN 13594

IMPACT **PROTECTORs** // EN 1621.1 // EN 1621.2 // EN 1621.3 // EN 1621.4

HELMETs // ECE 22.05

MOTOrcycle Rider Integrated Safety

Deliverable no. 3.5

STANDARDS IN PPE, A SURVEY

Deliverable no.	D 3.5
Dissemination level	Public
Work Package	3
Author	Mohammad Nasim, Dainese
Co-authors	Michele Brasca, Dainese
	Alessandro Cernicchi, Mavet
	Enrico Silani, Dainese
Status (F: final, D: draft)	F
File Name	Standards in PPE, a survey
Project Start Date and Duration	February 1, 2014 - January 31, 2018

Deliverable 3.5: Standards in PPE, A Survey http://www.motorist-ptw.eu

Polymer Testing 61 (2017) 249-257

Product Performance

Understanding the impact properties of polymeric sandwich structures used for motorcyclists' back protectors

Mohammad Nasim ^{a, b, *}, Michele Brasca ^a, Siamak Farajzadeh Khosroshahi ^b, Ugo Galvanetto ^b

^a R&D Department, Dainese S.p.A., 36060 Molvena, Italy
^b Department of Industrial Engineering, University of Padova, 35131 Padova, Italy

ARTICLE INFO

Article history: Received 31 March 2017 Accepted 18 May 2017 Available online 19 May 2017

Keywords: Impact absorption Back protector Polymer sandwich Passive safety Drop test Personal protective equipment

ABSTRACT

Conventional back protectors are comprised of two main parts: elastomeric foams to absorb the impact energy; and thermoplastic polymers to distribute the impact force on a wider area before the absorption process. Thermal comfort is usually maintained by vent holes within the structure. In the present work, the impact behavior of a number of samples made of materials commonly used for manufacturing such protectors was studied. Nitrile butadiene rubber as the soft layer and polyethylene thermoplastic as the hard layer were considered. The variables for the analyses were the thickness of the layers, the sample temperature and the distribution of the vent holes in the sample. The key findings are: the force distribution capability of the hard part and the stability of the impact properties with respect to temperature variations are fairly dependent on the thickness of the soft part; and a reasonable distance between two consecutive vent holes is required for achieving optimal impact protection.

© 2017 Elsevier Ltd. All rights reserved.

Hard shell effect

Vent holes effect

✤ Temperature effect

Polymeric Sandwich Structures Impact Properties

NECK INJURY PROTECTION

V

Biomechanics

- Accident analysis
- Prototypes
- **b** Evaluation
- D-neck
- Standards

Cervical Spine & Lower Head

Copyright @ 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

TORQUE

BENDING

COMPRESSION

TENSION

SHEAR

Head Extension with Tension

Head Axial Impact

Head Hypertension

Compression

 Compression injuries 	 Tension injury 	O Torsion injury
 Jefferson's fracture comminuted fracture of atlas compression fracture burst fracture 	 atlanto-occipital dislocation 	 atlanto-axial dislocation
○ Compression and flexion	\bigcirc Tension and flexion injury	◯ Shear injuries
anterior wedge fracture cervical sprain unilateral facet dislocation bilateral facet dislocation teardrop fracture	 bilateral facet dislocation 	 atlanto-axial subluxation odontiod fracture Fracture of articular process?
 Compression and extension 	○ Tension and extension	 Bending injuries
 Fracture of posterior element 	Whiplash •tear of facet joint •tear of intervertebral disc •chip fracture •Hangman's fracture •teardrop fracture	 narrowing of intervertebral foramen compression of articular process
Other injury		
 Clay-shoveler's fracture 		

AIS code	description
1	skin, muscle: abrasion, contusion (hematoma), minor laceration
2	vertebral artery: minor laceration cervical/thoracic spine: dislocation without fracture thoracic/lumbar spine: disc herniation
3	vertebral artery: major laceration cervical/thoracic spine: multiple nerve root laceration
4	cervical/thoracic spine: spinal cord contusion incomplete
5	cervical/thoracic spine: spinal cord laceration without fracture
6	decapitation cervical spine: spinal cord laceration at C3 or higher with fracture

Association of Advancement of Automotive Medicine, 2004

D ACCIDENT STATISTICS

Neck Injury & Head Impact Speed

			injuries of the neck							
	total		cervical spine strain		cervical spine fracture		soft tissue injury		other	
Speed head impact [km/h]	n	%	n	%	n	%	n	%	n	%
< 10	2	1.8	1	8.3	_	-	-	-	1	6.7
11 - 20	-	-	-	_	-	-	-	-	-	-
21 - 30	14	12.3	4	33.3	7	13.0	1	3.0	2	13.3
31 - 40	3	2.6	2	16.7	1	1.9	-	-		-
41 - 50	14	12.3	1	8.3	10	18.5	3	9.1	-	-
51 - 60	10	8.8		-	4	7.4	4	12.1	2	13.3
61 - 70	6	5.3	-	-	4	7.4	1	3.0	1	6.7
71 - 80	13	11.4	-	-	12	22.2	-	-	1	6.7
81 - 90	5	4.4	-	-	2	3.7	1	3.0	2	13.3
91 - 100	3	2.6	-	-	3	5.6	-	-	-	-
> 100	4	3.5	-		-	-	2	6.1	2	13.3
unknown	40	35.1	4	33.3	11	20.4	21	63.6	4	26.7
total	114	100	12	100	54	100	33	100	15	100

Source: COST database; Neck injuries in relation to head impact speed (100%=all neck injuries; 1 missing Speed head impact)

Body Impact Angle Accident analysis

body impact	to n	tal %	cerv spi stra	vical ine	cerv spi		soft tissue injury n %		es other n %	
angle [⁰]	25	20.7	1	22.0	- 20	27.0	0	0.1		50.0
< <u>15</u> 16 - 30	35 12	30.7 10.5	4	33.3 25.0		37.0	3 9	9.1 27.3	8	53.3
31 - 45	3	2.6	-	20.0	2	3.7	<u>9</u> 1	3.0	-	-
46 - 60	9	7.9			4	7.4	5	15.2		
> 60	29	25.4		8.3	22	40.7		6.1	4	26.7
unknown	26	22.8	4	33.3	6	11.1	13	39.4	3	20.0
total	114	100	12	100	54	100	33	100	15	100

Source: COST database; Body impact angle in relation to neck injury location (100%=each neck injury location; 1 missing body impact angle)

Head Impact Angle in Sagital Plane

$\begin{array}{c} +90^{\circ} \\ +45^{\circ} \\ 0^{\circ} \\ -45^{\circ} \end{array}$										
				lo	catio	on of neck injuries				
	to	tal	cerv spi stra	ne	cervical spine fracture		othar		ner	
head impact angle ZX[⁰]	n	%	n	%	n	%	n	%	n	%
0	52	45.6	2	16.7	34	63.0	6	18.2	10	66.7
1 - 45	14	12.3	4	33.3	2	3.7	6	18.2	2	13.3
46 - 90	3	2.6	-	-	3	5.6	-	-	-	-
91 -135	1	0.9	-	-	1	1.9	-	-	-	-
136 -180	5	4.4	-	-	3	5.6	2	6.1	-	-
unknown	39	34.2	6	50.0	11	20.4	19	57.6	3	20.0
total	114	100	12	100	54	100	33	100	15	100

Source: COST database; Head angle ZX in relation of neck injury location (100%=each neck injury location; 1 missing impact angle ZX)

Head Impact Angle in Transverse Plane

Source: COST database; Head angle XY in relation of neck injury location (100%=each neck injury location; 1 missing impact angle ZX)

WEIGHT	COMFORT (TO WEAR)	COMFORT (WHILE RIDING)	RIDER'S DYNAMICS	FUNCTIONAL POSSIBILITY	PROBLEMS INJURY PROTECTION
610 gm	(Ref)	(Ref)	(Ref)	Extension Flexion Lateral bending Torsion	 Placing and keeping the brace fixed Shear effect due to hardness laterally
235 gm			-	Extension Flexion Lateral bending Torsion	 Position of the foams Shape of the foams Shear effect due to hardness laterally
90 gm				Extension Flexion Lateral bending Translation	- Fixing the system with helmet & jacket - Opening
220 gm (deflated)				Extension Flexion Lateral bending Compression	- The thickness during the inflated condition - Difficulty in properly designing the geometries
	610 gm 235 gm 90 gm 220 gm	WEIGHT (TO WEAR) 610 gm (Ref) 235 gm • 90 gm •	WEIGHT (TO WEAR) (WHILE RIDING) 610 gm (Ref) (Ref) 235 gm • • 90 gm • •	WEIGHT (TO WEAR) (WHILE RIDING) DYNAMICS 610 gm (Ref) (Ref) (Ref) 235 gm • • 90 gm • • 220 gm • •	WEIGHT (TO WEAR) (WHILE RIDING) DYNAMICS POSSIBILITY 610 gm (Ref) (Ref) (Ref) Extension Flexion Lateral bending Torsion 235 gm • • • Extension Flexion Lateral bending Torsion 90 gm • • • Extension Flexion Lateral bending Torsion 90 gm • • • Extension Flexion Lateral bending Translation 220 gm (deflated) • • • Extension Flexion Lateral bending Translation

HYBRID III 50th PERCENTILE MALE

HYBRID III DUMMY DEVELOPED AND DISTRIBUTED BY LSTC

PISTA GP AGV E2205 MULTI GRAN PREMIO

*AG400: COMPOSITE SHELL + EPS PADDING

*The helmet model has been provided by Alessandro Cernicchi ©

Different Scenarios Impact analysis

V 45 D NECK FE MODEL

Hybrid III Head and Neck

D-neck coupled with Hybrid III Head

Validation of the Model

Effect of the Body Position Nightingale's compression impacts

Nasim M., Cernicchi, A., Galvanetto U., The Effect Of Human Body Positioning On Neck Injuries During Compressive Impacts, Proceeding of International Conference on Impact Loading of Structures and Materials, Xi'an, China, 2018.

Validation of the Model

Experimental Model Assumption of the test dummy model

- Other anthropomorphic Human models specially Head-Neck model.
- Different helmet models.
- Expertise for the Standard development.
 - Biomechanical Department
 - Test-houses
- ₲ Adjustment of the problems observed in the prototypes.
- ➡ Experimental set-up for practical evaluation.
 - Head position relative to torso.
 - Neck axial and shear forces.
 - Neck bending moment at occipital condyles.

- Innocuousness and Ergonomics.
- ₲ New Neck Anthropomorphic Test Device.
- New Test Method(s)
- Neck Injury Assessment Metric(s).

Development of the Experimental Setup

Deliverable

Nasim M., Brasca M., Cernicchi A., Silani E.; *Standards in PPE, A survey*, <u>http://www.motorist-ptw.eu/wp-content/uploads/2015/10/MOTORIST-D3.5_Standards-in-PPE-a-survey.pdf</u>, 2015.

Conference

Nasim M., Cernicchi A., Galvanetto U., The Effect Of Human Body Positioning On Neck Injuries During Compressive Impacts, 2018, Xi'an, China.

Nasim M., Brasca M., *Impact properties of polymeric materials used for motorcyclists' personal protective equipment*, International Conference on Impact Loading of Structures and Materials, 2016.

Nasim M., The introduction to the personal protective equipments for motorcyclists, MCAA General Assembly and Annual Conference, 2016. (Poster).

Journal

Nasim M., Brasca M., Khosroshahi S. F., Galvanetto U., *Understanding the impact properties of polymeric sandwich structures used for motorcyclists' back protectors*, Polymer Testing. Vol. 61, pp 249-257. Doi: doi.org/10.1016/j.polymertesting.2017.05.025.

GRAZIE

Mohammed Nasim

e-mail: mns_10@hotmail.com website: www.linkedin.com/in/nasimm/ www.dainese.com www.motorist-ptw.eu/