

PHOS Experiment: Implementation and Test of a Large Diameter Pulsating Heat Pipe on Board REXUS-18

1st Symposium on Space Educational Activities

9-12 December 2015, Padova, Italy

F. Creatini¹, <u>G. Becatti</u>¹, F. Belfi¹, G. Cicero¹, D. Fioriti¹, D. Di Prizio¹, S. Piacquadio¹, G. M. Guidi¹, G. Orlandini¹, A. Frigerio¹, S. Fontanesi¹, P. Nannipieri¹, M. Rognini¹, N. Morganti¹, S. Filippeschi¹, P. Di Marco¹, L. Fanucci¹, F. Baronti¹, M. Mameli¹, M. Manzoni² M. Marengo²

(1) University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa, Italy, Email: giuliabecatti92@gmail.com
(2) University of Bergamo, Viale Guglielmo Marconi 5, 24044 Dalmine (BG), Italy, Email: mauro.mameli@unibg.it

Contents

Pulsating Heat Pipes (PHPs)

Experimental apparatus and procedures

Experimental results

Conclusions and future developments

General characteristics

A two-phase passive heat transport device suitable for future space applications

Self-sustained thermally driven working fluid oscillations

Forced convection sensible heat transport

On Earth gravity conditions, the typical flow patter can form only if the tube has capillary dimensions

A large diameter PHP...

g

ESA Parabolic Flight 61

inner tube diameter 3mm; working fluid FC-72; input heat power 50W (*)

^(*)Mangini D., Mameli M., Georgoulas A., Araneo L., Filippeschi S. & Marengo M. (2015). A pulsating heat pipe for space applications: ground and microgravity experiments. Int. J. of Thermal Sciences 95 (1) 53-63.

10-12-2015

1st Symposium on Space Educational Activities

... on board REXUS 18 sounding rocket

A long reduced gravity period

Parabolic flight reduced gravity period ~ 20s

REXUS sounding rocket reduced gravity period ~ 120s

Contents

Pulsating Heat Pipes (PHPs)

Experimental apparatus and procedures

Experimental results

Conclusions and future developments

Test-cell

1st Symposium on Space Educational Activities

Università di Bergamo

Experimental procedures

1st Symposium on Space Educational Activities

Contents

Pulsating Heat Pipes (PHPs)

Experimental apparatus and procedures

Experimental results

Conclusions and future developments

Tests summary table

Analysis of the thermal response of two PHPs with different inner tube diameters

Large diameter PHP tested 🛽 220 W input heat power

Ground tests: vertical and horizontal positions Flight tests

Small diameter PHP tested 🛛 60 W – 40 W input heat power

Ground tests: vertical and horizontal positions

Flight tests

Ground tests (1/2)

Large diameter PHP in vertical or Bottom Heated Mode (BHM) position

Università di Pisa

Università di Bergamo

Ground tests (2/2)

Flight tests (1/2)

Università di Pisa

Università di Bergamo

0.8

0.75

0.7

0.65

0.6

0.55

0.3

0.25

0.2 200

Pressure

Pressure (bar) 0.5 0.45 0.4 0.35

Evaporator temperature

Condenser temperature

Time (s)

Contents

Pulsating Heat Pipes (PHPs)

Experimental apparatus and procedures

Experimental results

Conclusions and future developments

Conclusions

Main outcomes:

- The large diameter PHP didn't experience the expected reduced gravity conditions: as a result it was not possible to observe a net **transition** in the temperatures and pressure temporal evolution associated with the transition of the flow pattern from **stratified** to "**slug and plug**" flow;
- The overall thermal performance on **flight** and on ground with the device in **horizontal** position are comparable as on both cases the acceleration field acts to **separate** the liquid and vapour phase, thus resulting in an operational **detrimental effect**.
- The overall thermal performance on ground with the device in **vertical** position is the best as the acceleration field acts along the flow path direction, thus promoting the **working fluid motion**.

Future Developments

Università di Bergamo

Thanks for your attention

www.phosproject.com

of all and or

Università di Bergamo

Experimental set-up

Experiment box

Experimental set-up

On-board data handling box

Università di Bergamo

Power management box

Experimental set-up

Università di Bergamo

Experimental set-up

Battery pack

