FELDs Experiment: a new flexible soft docking concept Drop Your Thesis! 2014

Davide Petrillo Marco Gaino Alessandro Cavinato Federico Chiariotti Marco Buonomo (Team Leader) (Docking) (Mechanics) (Informatics) (Electronics) 1ST SYMPOSIUM SPACE EDUCATIONAL ACTIVITIES PADOVA - 9/12 December 2015

1° symposium on space educational activities Padova, 9-12 December 2015 Centro Congressi Padova "A.Luciani"

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Introduction

Space Rendezvous & Docking

Two spacecraft get into close approach and physical connection

Traditional docking technologies

- Soft docking + hard lock
- Berthing + hard lock

Drawbacks of traditional docking system

- Complexity (large numbers of actuators)
- High peak load trasmission
- Mass budget
- Not suitable for small satellites
- Strict alignment requirements (5 to 6 DoF control)

FELDs Experiment

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

FELDs soft docking advantages

- Looser relative attitude and position
 control
- No need for close approach
- Self-aligning

- Non-piercing capture
- Multi-shot capability for one capture
- Scalable to Microsat

FELDs Experiment

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

FELDs applications:

- Refueling
- Data Transfer
- Repairing missions

- Crew Transfer
- Space debris removal

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

The Experiment

- Sens

- 1) Introduction
- 2) FELDs Experiment

3) The experiment

- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Results

- SEC System:
- Measurements (Load cells, shear dampers)
- Assembly
- Vibrational model, impact model

• GUN + Release system:

- Friction estimation
- Spring compression (microgravity, measurements)
- Design (light, strong, materials)
- Tether material

Design:

- Distance between GUN and SEC
- Assembly
- Components orders
- Stereoscopic video system
- Electronics
- Budget
- Management

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

The Experiment

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Drop Your Thesis!

The Drop Your Thesis! (DYT) programme gives university students, from bachelor to PhD level, the opportunity to perform scientific or technological research in microgravity conditions.

-

5 Drops

Drop tower:

- Height: 146 m
- Fall: 120 m

- 4.74 s of microgravity

- Deceleration at 50 g

Introduction

Experiment

experiment

Drop Your

Thesis!

Results

Technical

Support

Outreach

Conclusions

FELDs

The

1)

2)

3)

4)

5)

6)

7)

8)

Drop Campaign

3-14 November 2014, ZARM Drop Tower, University of Bremen ۲

Gravity tests

Integration week:

- Assembly
- System improving

Drop week:

- 5 drops (one per day)
- Live results

(Mechanics, Electronics, Informatics)

Changes & adjustements of the system day by day

SPACE EDUCATIONAL ACTIVITIES

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

FELDs Experiment – 1° Drop

- Height between SEC and GUN: 34 cm
- Spring compression: 1.2 cm
- Probe velocity: 0.14 m/s

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Results

- FELDs experiment gave us a good response for almost all the subsystems involved.
- The measurements subsystems gave us two different ways to understand our experiment behavior:
 - MAGNETIC FIELD ACTION
 - TETHER DYNAMIC RESPONSE
 - Thanks to the stereoscopic camera subsystem
 - SEC DYNAMIC

Results – Magnetic Field Action

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Results – Tether dynamic response

Experiment 3) The experiment

Introduction

1)

2)

4) Drop Your Thesis!

FELDs

- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Results – Tether dynamic response

FELDs

Introduction

Experiment

1)

2)

5) Results

Thesis!

- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Results – SEC Response

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Technical Support

- CISAS "G.Colombo"
- Prof. Alessandro Francesconi
- Dr. Lorenzo Olivieri, Ph.D.
- Francesco Branz, Eng.
- Dr. Francesco Sansone, Ph.D.

- ZARM (Center of applied space technology and microgravity)
- Dr. Ing. Thorben Könemann
- Ing. Fred Oetken
- Ing. Jan Siemen

- ELGRA (European Low Gravity Research Association)
- Dr. Guus Borst

- ESA (European Space Agency)
- Lily Ha, Trainee at ESA
- Dr. Natacha Callens
- Dr. Piero Galeone

Outreach

- La stampa
 - Il sole 24 ore
 - Il mattino di padova
 - Il Corriere della sera
 - ASI website
 - ESA Education section
 - Rai TV

<text><image><image><image>

FELDs Team:

- Best team Project
- IAC2015, Jerusalem, Israel
 - Winning team, Hans Von Muldau Award

FELDs

1)

2)

experiment

Introduction

- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions

Conclusions and future developments

Every drop gave us an important lesson

tether release

- 1) Introduction
- 2) FELDs Experiment
- 3) The experiment
- 4) Drop Your Thesis!
- 5) Results
- 6) Technical Support
- 7) Outreach
- 8) Conclusions
- Networking

Design

Opportunities

- 1ST SYMPOSIUM ACE/EDUCATIONAL ACTIVITIES PADOMA - 9/12 December 2015
- Pragmatism

- Inspiration
- New experiences

The three successful drops gave us an encouraging feedback.

The unsuccessful drops showed the importance of the flexible

- Fitting well to the theoretical models and simulations
- Demonstrating the capability of this technology

Drop Your Thesis! Campaign revealed itself as an important experience for our future.

Thank you for your attention! Any questions?