Towards a Collaborative Distributed Ground Station for Small CubeSat Teams

11. December, 2015

Lasse Bromose Anders Ellersgaard Kalør Jesper Abildgaard Larsen

Department of Electronic Systems Aalborg University

Disposition

Motivation Overall requirements Decentralized coordination Receiving from multiple ground stations Implementation Simulation results Conclusions Experience from AAUSAT5 Acknowledgements

AAU Student Space

- AAU CubeSat 2003
- AAUSAT-II 2008
- ► AAUSAT3 2013
- ► AAUSAT5 2015
- ► AAUSAT4 2016

Background for the project

Experience from AAUSAT3

 More payload data was produced that we were able to download

Background for the project

AAUSAT5

- AAUSAT5 was ejected into ISS orbit
- ► 52° inclination
- Aalborg is located at +57° latitude, resulting in short passes

AND NEW C

Overall requirements

Scalability

Long term goal of including radio amateurs

Decentralized and fault-tolerant coordination

No single point of failure

Data-link protocol independent

► Support for multiple protocols, e.g. AX.25 and CSP

The new setup

- Requires coordination
- Allows for multiple receivers

Decentralized coordination

BREAK

- Must be highly scalable
- Tolerant of sporadic crashes
- Should not introduce high delays

Decentralized coordination

- Must be highly scalable
- Tolerant of sporadic crashes
- Should not introduce high delays
- Can be seen as a distributed leader election
- A modified bully algorithm has been implemented

The modified Bully algorithm

 Uses a dynamic cost function, based on elevation and pass duration

BREAK

- ► Triggers election on AOS and LOS
- Triggers election periodically during passes

Receiving from multiple ground stations

BREAK

TI BORG UNIVERSI

- Requires coordination
- ► Allows for multiple receivers

Frame alignment

Receiving from multiple ground stations

PEAK ONLY

Receiving from multiple ground stations

- It is unknown how many frames were received
- By estimating the network delay a probabilistic upper bound can be found

Implementation

GND CTRL

- In Java, with Akka Actors
- Generic radio interface

Client Proxy Server

- In Java, with Akka Actors
- MongoDB to keep track of connected ground stations and satellites
- Packet alignment and combining
- RabbitMQ for communication between ground stations and the Client Proxy Server

Simulation results

- Highly scalable
- Tolerant of packet loss and latency

Conclusions

- Highly scalable design
 - Increasing number of nodes does not influence performance
- Tolerant to packet losses
- ► The decentralized coordination based on a simple model
 - The model could be extended with data from the ground stations
- GNU Radio interface in development

Experience from AAUSAT5

- Running 3 ground stations; AAU, Austria, Germany
- Decentralized coordination functioning
- Weak signals from AAUSAT5; frame alignment and combining not tested
- Still undergoing evaluation

Acknowledgements

Questions?

