

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories

Yeimy Rivera, Enrico Landi, Susan T. Lepri 7 th METIS Workshop 2019, Padova, Italy November 12th 2019

Rivera, Y. J., Landi, E., Lepri, S. T., "Identifying spectral lines to study coronal mass ejection evolution in the lower corona", 2019, The Astrophysical Journal Supplement Series, 243, 34

Motivation

- Complex injection of energy and non uniform heating to adjacent CME structures
- Distinct thermal histories that cover a large range of temperatures and densities

Heliocentric distance (solar radii)

Aim

- Anticipate line emission from CME plasma that will be useful to study the evolving prominence and adjacent structure through the corona
- Identify key lines
	- Prominent
	- Ionization equilibrium
	- Spectral range of current or planned instrumentation
		- DKIST
		- UCoMP ~ 2Rsun
		- SO/SPICE 13 arcmin slit length and +/- 8 arcmin scan range
		- SO/METIS $-1.7Rs(min) 9Rs(max)$
- Proposal for future instrumentation

Upgraded Coronal Multichannel Polarimeter (UCoMP)

Coronagraph with multiwavelength capability in the visible able to observe a nine spectrally resolved coronal lines over the entire corona out to $2R_{\text{sun}}$

Landi et al. 2016

Aim

- Anticipate line emission from CME plasma that will be useful to study the evolving prominence and adjacent structure through the corona
- Identify key lines
	- Prominent
	- Ionization equilibrium
	- Spectral range of current or planned instrumentation
		- DKIST
		- UCoMP ~ 2Rsun
		- SO/SPICE 13 arcmin slit length and +/- 8 arcmin scan range
		- SO/METIS $-1.7Rs(min) 9Rs(max)$
- Proposal for future instrumentation

Candidate Spectral Lines

- How were they chosen?
	- Previously studied filament core (Landi et al. 2010)
		- EUV to near-infrared
		- Planned DKIST, SO/METIS and SO/SPICE spectral range
	- Test lines specific to UCoMP
- Lines tested: 118
- Ranges:
	- $\lambda = 100 14400 \text{ Å}$
	- $-$ Log T (K) = 4 6.7 (Chromospheric to sub-flare temperatures)

Table 2 A List of All the Lines Tested between 1001 and 4000 Å

Ion	λ (Å)	Log T(K)	Transition	Instrument Range
H I $(Ly\beta)$	1025.72	\sim	1s ${}^{2}S_{1/2}$ -3p ${}^{2}P_{1/2}$	\times
HI(Lya) METIS	1215.67	\cdots	1s ${}^{2}S_{1/2}$ -2p ${}^{2}P_{1/2}$	\cdots
Ca II	3934.78	4.05	$3p^6$ 4s ${}^2S_{1/2}$ -3p ⁶ 4p ${}^2P_{3/2}$	\Diamond (VBI blue)
SП	1259.52	4.25	$3s^2$ $3p^3$ 4 S _{3/2} -3s $3p^4$ 4 P _{5/2}	\cdots
CП	1036.34	4.40	$2s^2$ 2p ${}^2P_{1/2}$ -2s $2p^2$ ${}^2S_{1/2}$	\times
CП	2748.09	4.40	$2s^2$ 3p ${}^2P_{3/2}$ - $2s^2$ 4d ${}^2D_{5/2}$.
N II	1083.99	4.45	$2s^2$ $2p^2$ ${}^3P_0 - 2s$ $2p^3$ 3D_1	\cdots
O II	1128.07	4.45	2s $2p^4$ ${}^4P_{5/2}$ -2s ² $2p^2$ (3P) 3p ${}^4P_{5/2}$	\cdots
Mg III	3354.70	4.55	$2s^2$ $2p^5$ 3d ${}^3P_0 - 2s^2$ $2p^5$ 4p 3S_1	\cdots
Ne II	3345.36	4.55	$2s^2$ $2p^4$ 3s ${}^4P_{1/2}$ $-2s^2$ $2p^4$ 3p ${}^4D_{1/2}$	\cdots
$\mathbf S$ III	1190.20	4.70	$3s^2$ $3p^2$ ${}^3P_0 - 3s$ $3p^3$ 3D_1	\cdots
Si III	1206.50	4.70	$3s^2$ 1S_0 - 3s 3p 1P_1	\sim 100
Si III	1301.15	4.70	3s $3p^{3}P_{1}-3p^{2}^{3}P_{0}$	\cdots
Si III	1312.59	4.70	3s $3p^{-1}P_1-3s$ 4s ${}^{1}S_0$	\cdots
C III	1176.37	4.85	2s 2p ${}^{3}P_{2}$ -2p ² ${}^{3}P_{1}$	\cdots
N III	2248.65	4.85	$2s^2$ 3d ${}^2D_{5/2}$ - $2s^2$ 4p ${}^2P_{3/2}$	\cdots
N III	3366.77	4.85	2s 2p 3s ${}^{4}P_{3/2}$ -2s 2p 3p ${}^{4}P_{1/2}$	
OII	1153.78	4.90	$2s$ $2p^3$ ${}^3S_1 - 2p^4$ 3P_2	\cdots
Fe v	3076.54	4.95	$3d^{4}{}^{3}G_{3}$ -3d ⁴ (1) ${}^{3}F_{2}$	\cdots
Fe v	3143.86	4.95	$3d^{4}{}^{3}G_{5} - 3d^{4}$ (1) ${}^{3}F_{4}$	\cdots
Fe v	3892.38	4.95	$3d4-5D4-3d4$ (2) $3F4$	\Diamond (ViSP)
O IV	1338.62	5.15	2s $2p^2$ ${}^2P_{1/2}$ $-2p^3$ ${}^2D_{3/2}$	\cdots
O IV	1399.78	5.15	$2s^2$ 2p ² $P_{1/2}$ -2s $2p^2$ ⁴ $P_{1/2}$	\cdots
O IV	1401.16	5.15	$2s^2$ 2p ${}^2P_{3/2}$ -2s $2p^2$ ${}^4D_{5/2}$	\cdots
Fe VI	3814.63	5.20	$3p^6$ 3d ³ $4F_{3/2}$ -3p ⁶ 3d ³ $2P_{3/2}$	\Diamond (ViSP)
Fe vi	3890.51	5.20	$3p^6$ 3d ³ $4F_{5/2}$ -3p ⁶ 3d ³ $2P_{3/2}$	\Diamond (ViSP)
Fe VI	3983.44	5.20	$3p^6$ 3d ³ ${}^2F_{5/2}$ -3p ⁶ 3d ³ ${}^2D_{5/2}$	\Diamond (ViSP)
O V	2790.67	5.35	2s $3s$ $3s$ ₁ -2s $3p$ ₁ P_0	\cdots
Mg V	2783.58	5.45	$2s^2$ $2p^4$ ${}^3P_2 - 2s^2$ $2p^4$ 1D_2	\cdots
O VI	1031.91	5.45	$1s^2$ 2s ${}^2S_{1/2}$ -1s ² 2p ${}^2P_{3/2}$	×
O VI	1037.61	5.45	$1s^2$ 2s ${}^2S_{1/2}$ -1s ² 2p ${}^2P_{1/2}$	×
Ne vi	1005.73	5.60	$2s^2$ 2p ² $P_{3/2}$ -2s $2p^2$ ⁴ $P_{3/2}$	\times
Mg VI	1190.12	5.65	$2s^2$ 2p ³ $4S_{3/2}$ -2s ² 2p ³ $2P_{3/2}$	\cdots
Si VII	1049.15	5.79	$2s^2 2p^4$ ${}^3P_1 - 2s^2 2p^4$ 1S_0	\cdots
Mg VIII	1075.81	5.90	2s $2p^2$ ${}^2P_{3/2}$ -2p ³ ${}^4S_{3/2}$	\cdots
Fe x	1028.02	6.05	3s2 3p ⁴ 3d ${}^{4}D_{7/2}$ -3s ² 3p ⁴ 3d ${}^{2}F_{7/2}$	\times
Fe XIII	3388.91	6.25	$3s^2$ $3p^2$ $3p^2$ $-3s^2$ $3p^2$ $1D_2$	\cdots

Notes. " \diamond ": planned DKIST range. "x": planned SO/SPICE range.

Synthetic Intensities

- Synthetic intensity as a function of distance
	- collisional excitation and radiative scattering using atomic data from CHIANTI
- Composition: Photospheric abundances from Asplund et al. (2009) and coronal abundances from Schmelz et al. (2012)

Synthetic Intensities

- Synthetic intensity as a function of distance
	- collisional excitation and radiative scattering using atomic data from CHIANTI
- Composition: Photospheric abundances from Asplund et al. (2009) and coronal abundances from Schmelz et al. (2012)
- Relative Abundances:
	- Within the evolution of the plasma from Michigan Ionization Code (Landi et al. 2010)
		- Input: Density, Temperature, Velocity
		- Output: **Relative abundances**

Rivera et al. 2019a

Synthetic Intensities

- Synthetic intensity as a function of distance
	- collisional excitation and radiative scattering using atomic data from CHIANTI
- Composition: Photospheric abundances from Asplund et al. (2009) and coronal abundances from Schmelz et al. (2012)
- Relative Abundances:
	- Within the evolution of the plasma from Michigan Ionization Code (Landi et al. 2010)
		- Input: Density, Temperature, Velocity
		- Output: **Relative abundances**
- Angular width, ϕ
- Filling factor
	- Prominence $0.1 0.001$ (Labrosse et al. 2010)

Plasma Evolution

Heliocentric distance

Heliocentric distance

Rivera et al. 2019a

Synthetic Intensity – prominence

- Prominence produces brightest lines • Intensities decrease
- sharply after leaving the surface **Intensities**
- generated match equilibrium intensities

Solar C III

 C^{2+}

Rivera et al. 2019b

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories | 11

Synthetic Intensity – prominence-coronal transition region

Rivera et al. 2019b

Synthetic Intensity – coronal plasma

Rivera et al. 2019b

Diagnostics - prominence plasma

Multiple same ion lines can be used for temperature/density diagnostics (need to check optical thickness for lines formed below \sim log T (K) = 5.0)

N^e diagnostics: N IV 923/765 and Si III 1312/1301

T^e diagnostics: O III 702/599, O IV 790/553, and N III 991/686

(Keenan & Aggarwal 1989; Wilhelm et al. 1995 and references therein)

METIS: **Lyα 1215**

UCoMP: **H I (Hα) 6564** and **He I 10830**

DKIST: **Ca II 8544** and **Hβ (4862)** pressure diagnostics of filaments (Heasley & Milkey 1978; Gouttebroze et al. 2002)

Diagnostics - Coronal plasma

Multiple consecutive lines

Fe X, XI, XIV, and XV, which range in formation temperatures between 1 and 2.25 MK, can be useful to investigate heating throughout the plasma's $1.5R_{sun}$ evolution

Ar XI ~5 million K

UCoMP lines

Final Remarks

- We envision the lines will **facilitate complementary observations** between future instruments
- The recommended lines can be useful to **build comprehensive use-cases** with upcoming instruments available to study CMEs
- CME components can by studied with different instruments which can be combined to:
	- **study early stages of plasma evolution** with remote sensing observations
	- **connect with** *in situ* **observation on PSP and SO** while in quadrature with the earth
- **1. Rivera, Y. J., Landi, E., Lepri, S. T., & Gilbert, J. A., 2019a, 583 The Astrophysical Journal, 874, 164**
- **2. Rivera, Y. J., Landi, E., Lepri, S. T., 2019b, The Astrophysical Journal Supplement Series, 243, 34**

Table 1. Recommended lines above 1 phot $\rm cm^{-2} \ s^{-1}$ arcsec^{-2} .

Final Remarks

- We envision the lines will **facilitate complementary observations** between future instruments
- The recommended lines can be useful to **build comprehensive use-cases** with upcoming instruments available to study CMEs
- CME components can by studied with different instruments which can be combined to:
	- **study early stages of plasma evolution** with remote sensing observations
	- **connect with** *in situ* **observation on PSP and SO** while in quadrature with the earth
- **1. Rivera, Y. J., Landi, E., Lepri, S. T., & Gilbert, J. A., 2019a, 583 The Astrophysical Journal, 874, 164**
- **2. Rivera, Y. J., Landi, E., Lepri, S. T., 2019b, The Astrophysical Journal Supplement Series, 243, 34**

Thank you!

CME from previous study

- Filament eruption, January 5th 2005
- Halo CME
- Acceleration = 15 km/s^2 , velocity (at $30R_{sun}$) = 892 km/s
- B-class flare

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories | 10 טט:טט כּט/ו ט/כּטט

Ion Freeze-in Process

- Freeze-in process undergone by ions (Hundhausen et al. 1968)
	- Rapid decrease in density diminishes the ionization and recombination processes in the plasma
	- lonization level is unchanged beyond the freeze-in height and retains the history of thermal evolution
	- Freeze-in heights:
		- Heights can vary even within the same species
		- Sensitive to local density, temperature, velocity

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 4

Habbal et al. 2007

Michigan Ionization Code

- The MIC is solves a time-dependent ionization equation that governs the evolution of ions in the plasma as they propagate from the Sun (Landi et al. 2012)
- Ionization/recombination processes: excitation-autoionization, dielectric recombination, collisional ionization, radiative recombination and includes the effects of EUV and X-ray photoionization.
- Main inputs:
	- Electron density
	- Electron temperature
	- Bulk flow
- Assumptions:
	- Local Thermodynamic equilibrium at boundary
	- Electron velocity Maxwellian distribution
	- Ions all moving at the same velocity, no differential flow

Interplanetary CME event

ACE

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 6

Search Algorithm

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 8

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 11

Plasma Composition

RATIO OF ABSOLUTE ABUNDANCES TO PHOTOSPHERIC VALUES IN EACH PC.

- Values computed as: $(X/H)/(X/H)_{phot}$ where $(X/H)_{phot}$ taken from Asplund et al. 2009
- Plasma Composition:
	- PC 1 photospheric abundances
	- PC 2-4 coronal abundances
- Variation in temporal FIP evolution? Can we track this in a newly formed filament to observe FIP evolution with DKIST?

PC 1

- Freeze -in distances between components vary:
	- PC 1: 2 -25Rs
	- PC 2 -4: 2 -10Rs
- PC1 ions are active during the heating phase but are able to survive. Why are they so few in situ observations?
- Have potential to be continuously ionized farther from the Sun

