

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories

Yeimy Rivera, Enrico Landi, Susan T. Lepri 7th METIS Workshop 2019, Padova, Italy November 12th 2019

Rivera, Y. J., Landi, E., Lepri, S. T., "Identifying spectral lines to study coronal mass ejection evolution in the lower corona", 2019, The Astrophysical Journal Supplement Series, 243, 34

Motivation

- Complex injection of energy and non uniform heating to adjacent CME structures
- Distinct thermal histories that cover a large range of temperatures and densities

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories | 2

Rivera et al. 2019a

Heliocentric distance (solar radii)

Aim

- Anticipate line emission from CME plasma that will be useful to study the evolving prominence and adjacent structure through the corona
- Identify key lines
 - Prominent
 - Ionization equilibrium
 - Spectral range of current or planned instrumentation
 - DKIST
 - UCoMP ~ 2Rsun
 - SO/SPICE 13 arcmin slit length and +/- 8 arcmin scan range
 - SO/METIS 1.7Rs(min) 9Rs(max)
- Proposal for future instrumentation

Upgraded Coronal Multichannel Polarimeter (UCoMP)

Coronagraph with multiwavelength capability in the visible able to observe a nine spectrally resolved coronal lines over the entire corona out to 2R_{sun}

Line (Å)	lon	Temp (MK)
6564 (Hα)	HI	-
10830	He I	-
6373	Fe X	1.07
7894	Fe XI	1.26
10749	Fe XIII	1.66
10800	Fe XIII	1.66
5304	Fe XIV	2.00
6918	Ar XI	2.00
7062	Fe XV	2.19

Landi et al. 2016

Aim

- Anticipate line emission from CME plasma that will be useful to study the evolving prominence and adjacent structure through the corona
- Identify key lines
 - Prominent
 - Ionization equilibrium
 - Spectral range of current or planned instrumentation
 - DKIST
 - UCoMP ~ 2Rsun
 - SO/SPICE 13 arcmin slit length and +/- 8 arcmin scan range
 - SO/METIS 1.7Rs(min) 9Rs(max)
- Proposal for future instrumentation

Candidate Spectral Lines

- How were they chosen? •
 - Previously studied filament core (Landi et al. 2010)
 - EUV to near-infrared •
 - Planned DKIST, SO/METIS ٠ and SO/SPICE spectral range
 - Test lines specific to UCoMP
- Lines tested: 118 •
- Ranges:
 - $\lambda = 100 14400$ Å
 - Log T (K) = 4 6.7_ (Chromospheric to sub-flare temperatures)

A List of All the Lines Tested between 1001 and 4000 Å λ (Å) $\text{Log } T(\mathbf{K})$ Transition Instrument Range HI(Lyß) 1025.72 1s ²S_{1/2}-3p ²P_{1/2} × HI(Lyα) METIS 1215.67 1s ²S_{1/2}-2p ²P_{1/2} 3p6 4s 2S1/2-3p6 4p 2P3/2 3934.78 Ca II 4.05 (VBI blue) 3s² 3p³ ⁴S_{3/2}-3s 3p⁴ ⁴P_{5/2} 1259.52 4.25 2s² 2p ²P_{1/2}-2s 2p² ²S_{1/2} 1036.34 4.40× 2s² 3p ²P_{3/2}-2s² 4d ²D_{5/2} 2748.09 4.40 $2s^2 2p^2 {}^{3}P_0 - 2s 2p^3 {}^{3}D_1$ 1083.99 4.45 2s 2p⁴ ⁴P_{5/2}-2s² 2p² (3P) 3p ⁴P_{5/2} 1128.07 4.45 3354.70 4.55 2s² 2p⁵ 3d ³P₀-2s² 2p⁵ 4p ³S₁ Mg III 2s² 2p⁴ 3s ⁴P_{1/2}-2s² 2p⁴ 3p ⁴D_{1/2} 3345.36 4.55 Ne II $3s^2 3p^2 {}^{3}P_0 - 3s 3p^3 {}^{3}D_1$ 1190.20 4.703s² ¹S₀-3s 3p ¹P₁ Si III 1206.50 4.703s 3p ³P₁-3p² ³P₀ Si III 1301.15 4.70Si III 1312.59 4.70 3s 3p ¹P₁-3s 4s ¹S₀ СШ 1176.37 4.85 $2s 2p {}^{3}P_{2} - 2p^{2} {}^{3}P_{1}$ 2s² 3d ²D_{5/2}-2s² 4p ²P_{3/2} ΝIII 2248.65 4.85 2s 2p 3s ⁴P_{3/2}-2s 2p 3p ⁴P_{1/2} 3366.77 4.85 ΝIII 2s 2p3 3S1-2p4 3P2 1153.78 4.90 ОШ $3d^{4} G_{3} - 3d^{4} (1) F_{2}$ Fe V 3076.54 4.95 $3d^{4} G_{5} - 3d^{4} (1) {}^{3}F_{4}$ 4.95 Fe V 3143.86 $3d^{4} {}^{5}D_{4} - 3d^{4} (2) {}^{3}F_{4}$ Fe V 3892.38 4.95 (ViSP) 2s 2p² ²P_{1/2}-2p³ ²D_{3/2} O IV 1338.62 5.15 5.15 2s² 2p ²P_{1/2}-2s 2p² ⁴P_{1/2} O IV 1399.78 2s² 2p ²P_{3/2}-2s 2p² ⁴D_{5/2} 5.15 O IV 1401.16 3p6 3d3 4F3/2-3p63d3 2P3/2 3814.63 5.20 (ViSP) Fe VI 3p6 3d3 4F5/2-3p6 3d3 2P3/2 Fe VI 3890.51 5.20(ViSP) 3p6 3d3 2F5/2-3p6 3d3 2D5/2 Fe VI 3983.44 5.20(ViSP) 2790.67 5.35 2s 3s 3S1-2s 3p 3P0 2s² 2p⁴ ³P₂-2s² 2p⁴ ¹D₂ 2783.58 5.45 Mg V 1s² 2s ²S_{1/2}-1s² 2p ²P_{3/2} O VI 1031.91 5.45 × 1s² 2s ²S_{1/2}-1s² 2p ²P_{1/2} 5.45 O VI 1037.61 × 2s² 2p ²P_{3/2}-2s 2p² ⁴P_{3/2} 1005.73 5.60 Ne VI × 2s² 2p³ ⁴S_{3/2}-2s² 2p³ ²P_{3/2} Mg VI 1190.12 5.65 2s² 2p⁴ ³P₁-2s² 2p⁴ ¹S₀ Si VII 1049.15 5.792s 2p² ²P_{3/2}-2p³ ⁴S_{3/2} Mg VIII 1075.81 5.90 3s2 3p4 3d 4D7/2-3s2 3p4 3d 2F7/2 1028.02 6.05 Fe X × 3s² 3p² 3P₂-3s² 3p² 1D₂ Fe XIII 3388.91 6.25

Table 2

Notes. "() ": planned DKIST range. "×": planned SO/SPICE range.

Ion

SΠ

CIL

Сп

ΝII

ОП

SШ

ΟV

Synthetic Intensities

- Synthetic intensity as a function of distance
 - collisional excitation and radiative scattering using atomic data from CHIANTI
- Composition: Photospheric abundances from Asplund et al. (2009) and coronal abundances from Schmelz et al. (2012)

Synthetic Intensities

- Synthetic intensity as a function of distance
 - collisional excitation and radiative scattering using atomic data from CHIANTI
- Composition: Photospheric abundances from Asplund et al. (2009) and coronal abundances from Schmelz et al. (2012)
- Relative Abundances:
 - Within the evolution of the plasma from Michigan Ionization Code (Landi et al. 2010)
 - Input: Density, Temperature, Velocity
 - Output: Relative abundances

Rivera et al. 2019a

Synthetic Intensities

- Synthetic intensity as a function of distance
 - collisional excitation and radiative scattering using atomic data from CHIANTI
- Composition: Photospheric abundances from Asplund et al. (2009) and coronal abundances from Schmelz et al. (2012)
- Relative Abundances:
 - Within the evolution of the plasma from Michigan Ionization Code (Landi et al. 2010)
 - Input: Density, Temperature, Velocity
 - Output: Relative abundances
- Angular width, ϕ
- Filling factor
 - Prominence 0.1-0.001 (Labrosse et al. 2010)

Plasma Evolution

Rivera et al. 2019a

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories | 10

Synthetic Intensity – prominence

- Prominence produces brightest lines
 Intensities decrease
- sharply after leaving the surface
- Intensities generated match equilibrium intensities

Solar

C III

Helio C²⁺

Synthetic Intensity – prominence-coronal transition region

Synthetic Intensity - coronal plasma

Rivera et al. 2019b

Diagnostics - prominence plasma

Multiple same ion lines can be used for temperature/density diagnostics (need to check optical thickness for lines formed below $\sim \log T (K) = 5.0$)

N_e **diagnostics:** N IV 923/765 and Si III 1312/1301

T_e **diagnostics:** O III 702/599, O IV 790/553, and N III 991/686 (Keenan & Aggarwal 1989; Wilhelm et al. 1995

and references therein)

METIS: **Lyα 1215**

UCoMP: H I (Hα) 6564 and He I 10830

DKIST: **Ca II 8544** and **H**β **(4862)** pressure diagnostics of filaments (Heasley & Milkey 1978; Gouttebroze et al. 2002)

lon	Ratio	N _e (cm ⁻³) range	T _e (K) range	Instrument
N IV	923/765	10 ⁹ -10 ¹¹	1.4x10 ⁵	SO/SPICE
Si III	1312/1301	10 ⁹ -10 ¹¹	3.5x10 ⁴	SUMER
0	702/599		10 ^{4.4} -10 ^{5.4}	CDS/SOHO
O IV	790/553		8x10 ⁴ -2x10 ⁵	CDS/SOHO SO/SPICE
N III	991/686		<7x10 ⁴	SO/SPICE

Diagnostics - Coronal plasma

Multiple consecutive lines

Fe X, XI, XIV, and XV, which range in formation temperatures between 1 and 2.25 MK, can be useful to investigate heating throughout the plasma's $1.5R_{sun}$ evolution

Ar XI ~5 million K

UCoMP lines

Final Remarks

- We envision the lines will facilitate complementary observations between future instruments
- The recommended lines can be useful to build comprehensive use-cases with upcoming instruments available to study CMEs
- CME components can by studied with different instruments which can be combined to:
 - study early stages of plasma evolution with remote sensing observations
 - connect with *in situ* observation on PSP and SO while in quadrature with the earth
- 1. Rivera, Y. J., Landi, E., Lepri, S. T., & Gilbert, J. A., 2019a, 583 The Astrophysical Journal, 874, 164
- 2. Rivera, Y. J., Landi, E., Lepri, S. T., 2019b, The Astrophysical Journal Supplement Series, 243, 34

Table 1. Recommended lines above 1 phot $\rm cm^{-2}~s^{-1}$ arcsec⁻².

Ion	λ (Å)	Log T	Plasma	Ion	λ (Å)	Log T (K)	Plasma Structure
		(K)	Structure				
HI (In B)	1025 72	_	P	C III	4648.72	4.85	Р
H I (Ly-p)	1025.72		P	C III	4651.55	4.85	Р
$H I (H \beta)$	4862 73		P	O III	599.59	4.90	P, PCTR (PC ₃)
$H I (H \alpha)$	6564 72		P	O III	5008.24	4.90	Р
Hel	4479.73		P	O III	702.90	4.90	Р
Hel	5877.25		P	Fe V	3892.38	4.95	Р
HeI	7067.14		P	S IV	750.22	5.00	Р
Hel	10833.31	_	P	N IV	765.15	5.15	$P, PCTR (PC_3)$
Coll	2024 78	4.05	P	O IV	553.33	5.15	Р
Са П	8544.44	4.05	P PCTP (PCs)	O IV	554.51	5.15	P, PCTR (PC ₃)
Mall	0046.76	4.05	P	O IV	609.83	5.15	Р
Mg II Mg II	10017.97	4.15	P	O IV	787.71	5.15	Р
Mg II	10018.24	4.15	P	O IV	790.20	5.15	Р
SIL	012 74	4.15	P	O IV	1399.78	5.15	Р
SIL	1250 52	4.25	P	O IV	1401.16	5.15	Р
C II	1026.24	4.40	P	O V	629.73	5.35	PCTR (PC_4)
СП	2748.00	4.40	P	O VI	1031.91	5.45	C, PCTR (PC ₄)
СП	4268.46	4.40	P	O VI	1037.61	5.45	C, PCTR (PC ₄)
СП	6570.87	4.40	P	Fe VIII	168.17	5.65	PCTR (PC ₄)
СП	6584.70	4.40	P	Mg VI	1190.12	5.65	$PCTR(PC_4)$
0 11	537.83	4.45	P	Ne VIII	770.43	5.80	C, PCTR (PC ₄)
0 11	718 50	4.45	P PCTR (PCs)	Ne VIII	780.39	5.80	C, PCTR (PC4)
0 11	1128.07	4.45	P	Fe IX	171.07	5.85	C, PCTR (PC ₄)
0 11	7320.94	4.45	P	Fe X	6376.29	6.05	C, PCTR (PC ₄)
0 11	7332.76	4 45	P	S IX	12523.48	6.05	С
NII	1083.99	4.45	P	Fe XI	7894.03	6.12	С
Hell	256.32	4.70	P. C. PCTR (PCa)	Si X	14304.72	6.15	С
HeII	303.78	4 70	$P \subset PCTR(PC_{a})$	Fe XII	186.89	6.20	С
SIII	1190.20	4.70	P	Fe XII	195.12	6.20	С
SiIII	1206.50	4.70	P	Fe XIII	3388.91	6.25	С
Si III	1301.15	4 70	P	Fe XIII	10749.11	6.25	C
Si III	1312 59	4 70	P	Fe XIII	10800.77	6.25	C
CIII	977.02	4.85	P	Fe XIV	5304.48	6.30	C
NIII	686.34	4.85	P	Fe XV	7062.15	6.35	C
NIII	001 58	4.85	Р	Ar XI	6918.02	6.68	C

Final Remarks

- We envision the lines will facilitate complementary observations between future instruments
- The recommended lines can be useful to build comprehensive use-cases with upcoming instruments available to study CMEs
- CME components can by studied with different instruments which can be combined to:
 - study early stages of plasma evolution with remote sensing observations
 - connect with *in situ* observation on PSP and SO while in quadrature with the earth
- 1. Rivera, Y. J., Landi, E., Lepri, S. T., & Gilbert, J. A., 2019a, 583 The Astrophysical Journal, 874, 164
- 2. Rivera, Y. J., Landi, E., Lepri, S. T., 2019b, The Astrophysical Journal Supplement Series, 243, 34

Thank you!

Table 1.	Recommended	lines	above	1	phot	cm^{-2}	s^{-1}
$\operatorname{arcsec}^{-2}$.							

Ion	λ (Å)	Log T	Plasma	Ion	λ (Å)	Log T (K)	Plasma Structure
		(K)	Structure				
HI (Ly, B)	1025 72	_	Р	C III	4648.72	4.85	Р
HI(Ly-p)	1025.72	_	P	C III	4651.55	4.85	Р
$H I (H\beta)$	4862 73		P	O III	599.59	4.90	P, PCTR (PC ₃)
	6564 72	_	P	O III	5008.24	4.90	Р
Hel	4479.72	_	P	O III	702.90	4.90	Р
HeI	5877.25		P	Fe V	3892.38	4.95	Р
Hel	7067.14		P	S IV	750.22	5.00	Р
Hel	10022.21	_	F	N IV	765.15	5.15	P, PCTR (PC ₃)
пет	2024 79	4.05	P	O IV	553.33	5.15	Р
Сап	0504.10	4.05	P DOTP (DC-)	O IV	554.51	5.15	P, PCTR (PC ₃)
Ca II Ma II	8044.44	4.05	P, PUIR (PU3)	O IV	609.83	5.15	Р
Mg II Mg II	9240.70	4.15	P	O IV	787.71	5.15	Р
Mg II Mg II	10018.24	4.15	F	O IV	790.20	5.15	Р
Mg II	019 74	4.15	P	O IV	1399.78	5.15	Р
511	1050.50	4.20	P	O IV	1401.16	5.15	Р
5 11	1209.02	4.20	P	O V	629.73	5.35	PCTR (PC ₄)
	1036.34	4.40	P	O VI	1031.91	5.45	C. PCTR (PCA)
CI	2748.09	4.40	P	O VI	1037.61	5.45	C. PCTR (PC4)
CH	4208.40	4.40	P	Fe VIII	168.17	5.65	PCTR (PC ₄)
CH	0019.81	4.40	P	Mg VI	1190.12	5.65	PCTR (PC4)
	6084.70	4.40	P	Ne VIII	770 43	5.80	C PCTR (PC4)
01	037.83	4.45	r	Ne VIII	780.39	5.80	C. PCTR (PC_4)
	1100.07	4.45	$P, POIR(PO_3)$	Fe IX	171.07	5.85	$C_{\rm PCTR}$ (PC4)
	7220.04	4.45	P	Fe X	6376.29	6.05	$C_{\rm PCTR}$ (PC4)
0 11	7320.94	4.45	r	SIX	12523.48	6.05	C, I OIR (I O4)
NH	1082.00	4.45	P	Fe XI	7894.03	6.12	č
IN II He II	1083.99	4.40	P C DCTD (DC)	Si X	14304 72	6.15	c
He II	200.32	4.70	$P, C, POTR(PC_3)$	E XII	186.89	6.20	c
Hell	303.78	4.70	$P, C, POTR (PC_3)$	E XII	195.12	6.20	C
S III	1190.20	4.70	P	E XIII	2288 01	6.25	C
51111	1206.50	4.70	P	E YIII	10749.11	6.25	C
3111	1301.15	4.70	r	Fe XIII	10745.11	6.25	C
SIIII	1312.59	4.70	P	Fe XIV	5304.48	6.30	C
NIII	977.02	4.80	P	E VV	7062.15	6.25	C
IN III	080.34	4.80	P	re AV	6018.09	6.69	C
N 111	991.58	4.85	Р	Ar Al	0918.02	0.00	C

CME from previous study

- Filament eruption, January 5th 2005
- Halo CME
- Acceleration = 15 km/s², velocity (at 30R_{sun}) = 892 km/s
- B-class flare

A comprehensive study to determine spectral lines for CME diagnostics with current and future observatories | 10

Ion Freeze-in Process

- Freeze-in process undergone by ions (Hundhausen et al. 1968)
 - Rapid decrease in density diminishes the ionization and recombination processes in the plasma
 - Ionization level is unchanged beyond the freeze-in height and retains the history of thermal evolution
 - Freeze-in heights:
 - Heights can vary even within the same species
 - Sensitive to local density, temperature, velocity

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 4

Habbal et al. 2007

Michigan Ionization Code

- The MIC is solves a time-dependent ionization equation that governs the evolution of ions in the plasma as they propagate from the Sun (Landi et al. 2012)
- Ionization/recombination processes: excitation-autoionization, dielectric recombination, collisional ionization, radiative recombination and includes the effects of EUV and X-ray photoionization.
- Main inputs:
 - Electron density
 - Electron temperature
 - Bulk flow
- Assumptions:
 - Local Thermodynamic equilibrium at boundary
 - Electron velocity Maxwellian distribution
 - lons all moving at the same velocity, no differential flow

Interplanetary CME event

ACE

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 6

Search Algorithm

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 8

Yeimy Rivera | How we use in-situ composition to derive the thermodynamic evolution of Coronal Mass Ejections (CMEs) near the Sun | 11

Plasma Composition

RATIO OF ABSOLUTE ABUNDANCES TO PHOTOSPHERIC VALUES IN EACH PC.

\mathbf{PC}	Fe	С	Ο
$\begin{array}{c}1\\2\&3\\4\end{array}$	1.08 ± 0.25	0.91 ± 0.35	1.28 ± 0.21
	3.56 ± 0.84	0.85 ± 0.32	1.19 ± 0.20
	2.59 ± 0.61	0.65 ± 0.25	0.92 ± 0.15

- Values computed as: (X/H)/(X/H)_{phot} where (X/H)_{phot} taken from Asplund et al. 2009
- Plasma Composition:
 - PC 1 photospheric abundances
 - PC 2-4 coronal abundances
- Variation in temporal FIP evolution? Can we track this in a newly formed filament to observe FIP evolution with DKIST?

PC 1 (filament)

- Freeze-in distances
 between components
 vary:
 - PC 1: 2-25Rs
 - PC 2-4: 2-10Rs
- PC1 ions are active during the heating phase but are able to survive. Why are they so few in situ observations?
- Have potential to be continuously ionized farther from the Sun

