

Multiphysics modelling of thermal cracks in multiphase heterogenous porous materials

PhD Candidate: Zechao Chen -- 38th

Admission to the second year - 13/09/2023

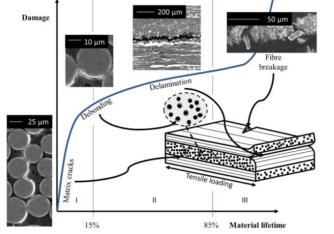
Supervisor: Prof. Lorenzo Sanavia Co-supervisor: Prof. Laura De Lorenzis, ETH

PhD Course in Sciences, Technologies And Measurements For Space

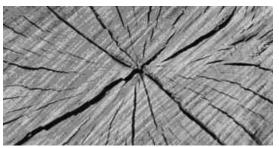
- **1. Introduction**
- 2. Research background
- **3. Project objectives**
- 4. Work methodology
- **5. Work schedule**

Introduction

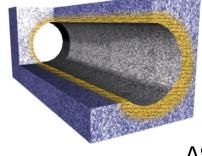
Motivation: cracks due to hydro-thermal effects

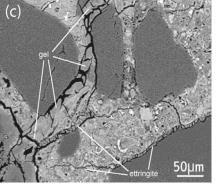


Geoenvironmental engineering


Desiccation (Laloui 2009)

http://www.argiles.fr/



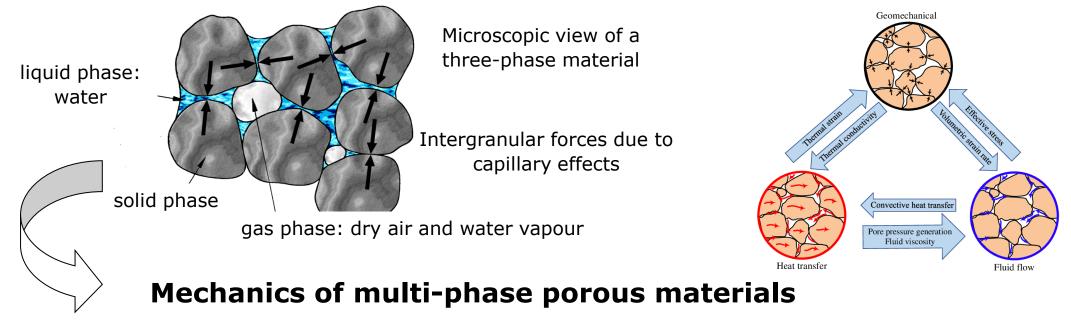

Damage in composite laminates doi.org/10.1007/s10853-018-2045-6

Cracks in wood

Desaturation/cracks developement of EDZ (Excavation Damaged Zone) Deep nuclear waste disposals

ASR (Alkali-Silica Reaction) shrinkageinduced cracking in concrete

Zechao Chen



Research background

Multi-phase porous material

Composed by a solid skeleton with open pores containing one or more fluids

solid-fluids interaction, liquid-gas interaction, non-isothermal conditions

- Lewis, R. W., Schrefler, B. A. 1998. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (Second.). Chichester, UK: John Wiley & Sons.
- William G. Gray, Cass T. Miller 2014. Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer.

Zechao Chen

Multi-phase porous material

Equilibrium equations (mixture; quasi-statics):

 $div\left(\mathbf{\sigma}' - \left[p^g - S_w p^c\right]\mathbf{1}\right) + \rho \mathbf{g} = 0$

Mass balance equation (solid, liquid water and water vapour):

$$\begin{split} &n\left[\rho^{w}-\rho^{gw}\right]\left[\frac{\partial S_{w}}{\partial t}\right]+\left[\rho^{w}S_{w}-\rho^{gw}\left[1-S_{w}\right]\right]div\left(\frac{\partial \mathbf{u}}{\partial t}\right)+\left[1-S_{w}\right]n\left[\frac{\partial\rho^{gw}}{\partial t}\right]\\ &-div\left(\rho^{g}\frac{M_{a}M_{w}}{M_{g}^{2}}\mathbf{D}_{g}^{gw}grad\left(\frac{\partial p^{gw}}{\partial p^{g}}\right)\right)+div\left(\rho^{w}\frac{\mathbf{k}k^{rw}}{\mu^{w}}\left[-grad(p^{g})+grad(p^{c})+\rho^{w}\mathbf{g}\right]\right)\\ &+div\left(\rho^{gw}\frac{\mathbf{k}k^{rg}}{\mu^{g}}\left[-grad(p^{g})+\rho^{g}\mathbf{g}\right]\right)-\beta_{swg}\frac{\partial T}{\partial t}=0 \end{split}$$

• Lewis, R. W., Schrefler, B. A. 1998. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (Second.). Chichester, UK: John Wiley & Sons.

Zechao Chen

Multi-phase porous material

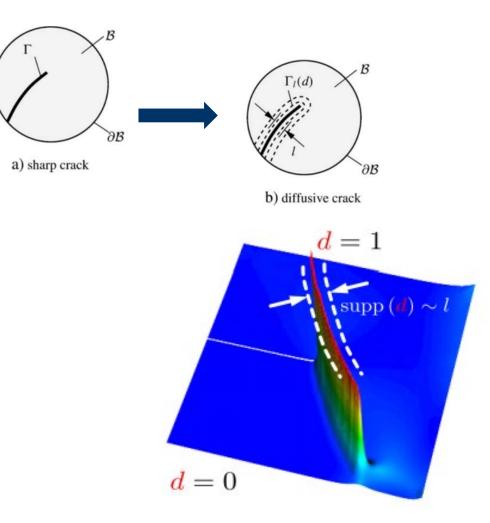
Dry air mass balance equation:

$$-n\rho^{ga}\left[\frac{\partial S_{w}}{\partial t}\right] + \rho^{ga}\left[1 - S_{w}\right]div\left(\frac{\partial \mathbf{u}}{\partial t}\right) + nS_{g}\frac{\partial\rho^{ga}}{\partial t} - div\left(\rho^{g}\frac{M_{a}M_{w}}{M_{g}^{2}}\mathbf{D}_{g}^{ga}grad\left(\frac{p^{ga}}{p^{g}}\right)\right) + div\left(\rho^{ga}\frac{\mathbf{k}k^{rg}}{\mu^{g}}\left[-grad(p^{g}) + \rho^{g}\mathbf{g}\right]\right) - \left[1 - n\right]\beta_{swg}\rho^{ga}\left[1 - S_{w}\right]\frac{\partial T}{\partial t} = 0$$

Energy balance equation (mixture):

$$\left(\rho C_{p}\right)_{eff} \frac{\partial T}{\partial t} + \rho^{w} C_{p}^{w} \left(\frac{\mathbf{k}k^{rw}}{\mu^{w}} \left[-grad(p^{g}) + grad(p^{c}) + \rho^{w}\mathbf{g}\right]\right) \cdot grad(T)$$

$$+ \rho^{g} C_{p}^{g} \left(\frac{\mathbf{k}k^{rg}}{\mu^{g}} \left[-grad(p^{g}) + \rho^{g}\mathbf{g}\right]\right) \cdot grad(T) - div \left(\chi_{eff}grad(T)\right) = -m_{vap} \Delta H_{vap}$$


• Lewis, R. W., Schrefler, B. A. 1998. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (Second.). Chichester, UK: John Wiley & Sons.

Zechao Chen

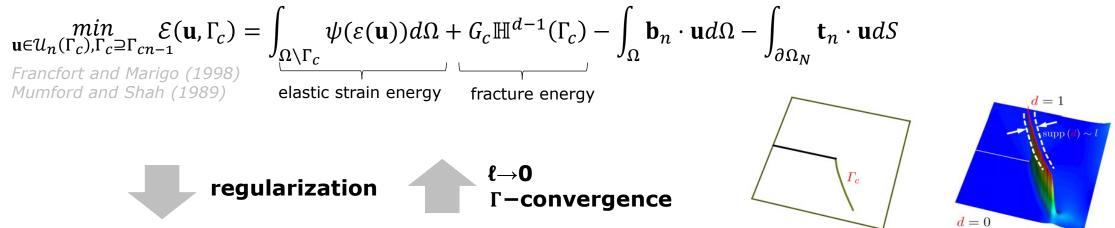
The Phase-Field Method (PFM) to fracture

Key advantages

- Flexibility (initiation, propagation, merging, branching)
- Variational framework
- Simple implementation

Disadvantages

- Fine mesh needed
- Efficiency/robustness of solution


SwissMech Seminars Archive – SwissMech Seminars

The Phase-Field Method (PFM) to fracture

Sharp crack: (variational reformulation of) Griffith

Diffusive crack: phase-field approach

$$\begin{array}{l} \underset{u \in \mathcal{U}_{n}, d \geq d_{n-1}}{\min} \quad \mathcal{E}_{\ell}(\mathbf{u}, d) = \int_{\Omega} g(d) \psi(\varepsilon(\mathbf{u})) d\Omega + \frac{G_{c}}{c_{w}} \int_{\Omega} \left[\frac{w(d)}{\ell} + \ell |\nabla d|^{2} \right] d\Omega - \int_{\Omega} \mathbf{b}_{n} \cdot \mathbf{u} d\Omega - \int_{\partial \Omega_{N}} \mathbf{t}_{n} \cdot \mathbf{u} dS \\ \begin{array}{l} \underset{\text{Bourdin et al.}(2000) \\ \text{Ambrosio and Tortorelli (2000)} \\ \underset{\text{Braides (1998)}}{\text{mode for the strain energy}} \end{array} \right] \\ \end{array}$$

SwissMech Seminars Archive – SwissMech Seminars

Zechao Chen

The Phase-Field Method (PFM) to fracture

...with energy decomposition

$$\min_{\mathbf{u}\in\mathcal{U}_{n,d\geq d_{n-1}}} \mathcal{E}_{\ell}(\mathbf{u},d) = \int_{\Omega} \left[g(d)\psi^{+}(\varepsilon(\mathbf{u})) + \psi^{-}(\varepsilon(\mathbf{u}))\right] d\Omega + \frac{G_{c}}{c_{w}} \int_{\Omega} \left[\frac{w(d)}{\ell} + \ell |\nabla d|^{2}\right] d\Omega - \int_{\Omega} \mathbf{b}_{n} \cdot \mathbf{u} d\Omega - \int_{\partial\Omega_{N}} \mathbf{t}_{n} \cdot \mathbf{u} dS$$

Amor et al. (2009) Miehe et al.(2010) Freddi and Royer-Carfagni (2010)

Phase-field evolution equation

g(d): degradation function

G_c : fracture toughness

- $\ell\colon$ crack length scale parameter/ regularization length
- u: displacement field
- *d*: fracture phase field

$$\begin{split} -2l \triangle d + \frac{1}{2l}d &= \frac{2(1-d)}{G_c} \mathcal{H} \qquad \mathcal{H}\left(\mathbf{x},t\right) := \max_{\tau \in [0,t]} \Psi^+\left(\boldsymbol{\varepsilon}\left(\mathbf{x},\tau\right)\right) \\ \psi \colon \text{ elastic energy density function } (\psi^+ \text{ refers to tension and } \psi^- \text{ is compression}) \end{split}$$

- w(d): local damage function/dissipation function
- ∇d : spatial gradient
- c_w : normalization constant
- **b**_n: body force vector **t**_n: face force vector <u>SwissMech Seminars Archive SwissMech Seminars</u>

Zechao Chen

Develop a THM (Thermo-Hydro-Mechanical) crack Phase-field numerical model

- Develop a numerical model able to study the nucleation and propagation of cracks induced by **thermal effects** in multiphase heterogenous porous materials.
- Merge a **thermodynamically consistent multiphase porous media model** (and the associated finite element code Comes-Geo developed at the UNIPD) with a **crack phase-field model** (the Griphfith code for brittle fracture developed at ETH Zurich).
- After validation with experiments designed from the numerical modelling, the model will be further extended:
 - **a)** from quasi-statics to dynamics
- Application to study desiccation cracks in clayey materials and in heterogeneous composite materials.

Implementation strategy

Describing the coupled problem of poromechanics and cracking under thermal conditions in variably saturated porous media can be foreseen.

• Reference: Cajuhi T, Sanavia L, De Lorenzis L. Phase-field modeling of fracture in variably saturated porous media[J]. Computational Mechanics, 2018, 61(3): 299-318.

```
Initialization (t = t_0 = 0): \bar{\mathbf{u}}, \bar{\mathbf{t}}, \bar{p}, \bar{q}, \bar{d}, \mathcal{H} = 0;

for n = 0: N-1 do

| compute \Psi^+(t = t_{n+1}) |

if \Psi^+ > \mathcal{H}_n then

| \mathcal{H}_{n+1} \leftarrow \Psi^+(t = t_{n+1});

else

| \mathcal{H}_{n+1} = \mathcal{H}_n;

end

solve d_{n+1}(\mathcal{H}_{n+1});

solve \mathbf{u}-p_w := \mathbf{U}_{n+1}(d_{n+1});

end

Algorithm 1: Algorithmic solution procedure for the \mathbf{u}-

p_w-d system
```

Previous algorithm

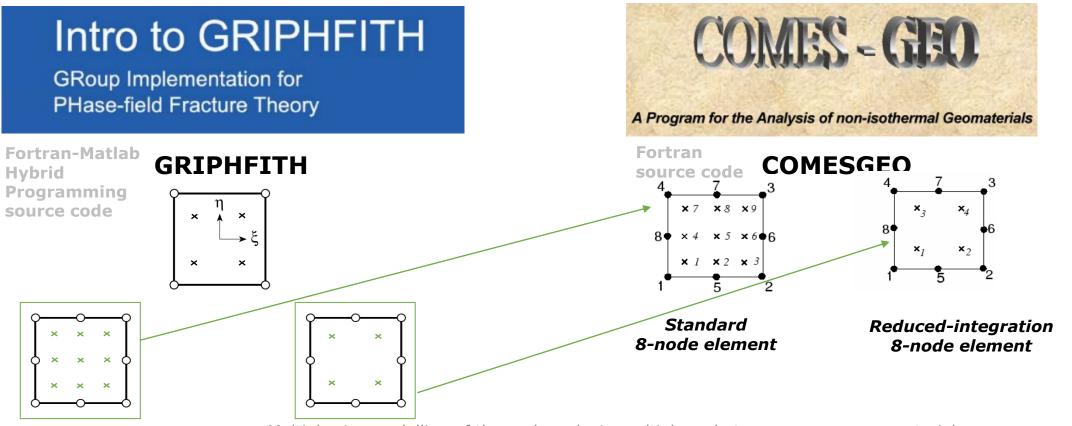
Initialization
$$(t = t_0 = 0)$$
: \mathbf{u} , \mathbf{t} , \mathbf{p} , \mathbf{q} , \mathbf{d} , \mathcal{H} , $\mathbf{T} = 0$;
for $n = 0$: $N - 1$ do
compute $\Psi^+(t = t_{n+1})$
if $\Psi^+ > \mathcal{H}_n$ then
 $| \mathcal{H}_{n+1} \leftarrow \Psi^+(t = t_{n+1})$;
else
 $| \mathcal{H}_{n+1} = \mathcal{H}_n$;
end
solve $d_{n+1}(\mathcal{H}_{n+1})$;
solve $u - p_c - p_g - \mathbf{T}$: = $\mathbf{U}_{n+1}(\mathbf{d}_{n+1})$;
end
Algorithm : Algorithmic solution procedure for the $u - p_c - p_g$ -T-d system

New algorithm

Zechao Chen

Work methodology

What has been done


ETH zürich = Q Search Git	tLab /				
G GRIPHFITH		CompMech > GRIPHFITH			
 Project information Repository Issues 23 Merge requests 2 CI/CD Deployments Packages and registries Monitor Analytics Wiki Snippets 		G GRIPHFITH Project ID: 23311 € 	I MIB Project Storage 🖋 2 Releases ase-field model of fracture to solve basic and advanced damage and fractur	te mechanics problems.	
		Name	Last commit	Last update	
		□.ci-container	In .ci-container/README.md: fix registry login	1 year ago	
		Dependencies	add abaqus import to specimen.external	5 months ago	
Intro to 🤅	RIPHFITH	🗅 Scripts	phase_field.fem.solver: Generalize newton_raphson routines	6 days ago	
GRoup Implemen		C Sources	phase_field.fem.solver: Generalize newton_raphson routines	6 days ago	
PHase-field Fract		🗅 Tests	Rename label_el -> elem_material_id	4 months ago	
		♦ .gitignore	Add macOS build artifacts to `.gitignore`.	1 year ago	
		₩.gitlab-ci.yml	Linux CI: remove unused dependency femlab	6 months ago	
		🛱 LICENSE	Remove file extension from LICENSE.txt	1 year ago	
		₩ŧ README.md	Update contributors	9 months ago	

What has been done

Implementation of Quad8 element in Griphfith of ETH Zurich to be compatible with ComesGeo code in UNIPD

Work methodology

What has been done

In new version of Griphfith ٠

vtk DataFile Version 3.0	1 # 'vtt'lustinle veridion'3.0'
Solution SCII	2 Solution
mataset unstructured_grid Four elementsOuad44 Gauss point	S ⁴ POINTS 21 Floor S ⁵ POINTS 21 Floor
OINTS 9 float 0.00000000000000000000000000000000000	6 0.00000000000000000000000000000000000
0.0000000000000000000000000000000000000	7 0.000000000000000000000000 0.000000000
0.000000000000000000000000000000000000	8 0.00000000000000000000000000000000000
0.5000000000000 0.000000000000000000000	0.0000000000000000000000000000000000000
0.500000000000 0.50000000000 0.000000000	11 0.2500000000000 0.000000000000000000000
0.5000000000000 1.00000000000 0.0000000000	12 0.2500000000000 0.50000000000 0.0000000000
1.0000000000000 0.50000000000 0.000000000	13 0.25000000000000 1.000000000000 0.00000000000000000000000000000000000
1.000000000000 1.00000000000 0.000000000	15 0.50000000000000 0.2500000000000000000
2ELLS 4 20	16 0.5000000000000 0.50000000000 0.00000000
4 0 3	17 0.5000000000000 0.750000000000 0.0000000000
4 1	18 0.50000000000000 1.0000000000 0.0000000000
4 1 4 5 2	19 0.75000000000000 0.00000000000000000000000000000000000
5 2 6	21 0.75000000000000 1.00000000000 0.0000000000
	22 1.000000000000 0.00000000000000000000
4 4 7	23 1.000000000000 0.250000000000 0.0000000000
8 5	24 1.000000000000 0.500000000000 0.00000000000E+000 25 1.000000000000 0.7500000000000 0.0000000000E+000
ELL_TYPES 4	226 1.000000000000000 0.7500000000000 0.0000000000
9	27 CELLS 4 26
9	28 8 0 2 10 8
7 9	29 8 2 4 12 10
OINT_DATA 9	20 8 8 10 18 16 31 8 10 12 20 18
ECTORS Displacement float	22 CELL TYPES 4
0.0000000000000 0.0000000000 0.00000000	23 9
-0.00000000000000 0.005000000000 0.00000000	34 9
-0.00000000000000000000000000000000000	25 9 26 9
-0.0000000000000 0.0000000 0.0000000000	30 9 27 CELL_DATA 4
0.0000000000000000000000000000000000000	38 SCLARS MAT_ID int 1
-0.000000000000000000000000000000000000	39 LOOKUP_TABLE default
-0.0000000000000 0.005000000000 0.00000000	40 1
0.0000000000000000000000000000000000000	41 1 42 1
ENSORS Strain float -8.924500002264695E-019 4.336808689942014E-019 0.0000000000000000E+000	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.336808689942014E-019 1.000000000000000E-002 0.00000000000000E+000	44 POINT_DATA 21
0.000000000000000000000000000000000000	45 VECTORS Displacement float
	46 0.0000000000000 0.000000000000 0.00000000000 47 -0.000000000000 0.0025000000000 0.00000000000
1.005061465297237E-019 -2.168404344971009E-018 0.0000000000000000E+000	48 -0.0000000000000 0.0050000000 0.000000000
-2.168404344971009E-018 1.00000000000000E-002 0.0000000000000E+000 0.0000000000000E+000 0.000000000000E+000 0.0000000000	49 0.000000000000 0.0075000000000 0.0000000000
	50 0.0000000000000 0.010000000000 0.00000000
-1.162328814093078E-034 -4.770489558936217E-018 0.000000000000000E+000	51 -0.00000000000000 0.000000000000 0.000000000000 52 0.000000000000 0.0000000000 0.00000000000
-4.770489558936217E-018 9.999999999999998E-003 0.00000000000000E+000	52 0.0000000000000 0.00000000 0.000000000
0.000000000000000000000000000000000000	54 -0.000000000000 0.00000000 0.0000000000
-5.386827741239659E-019 7.589415207398522E-019 0.000000000000000E+000	55 -0.000000000000 0.002500000000 0.0000000000
-5.386827741239659E-019 7.589415207398522E-019 0.0000000000000000E+000 7.589415207398522E-019 1.00000000000000E-002 0.00000000000000E+000	56 0.0000000000000000 0.0050000000000 0.0000000000000 57 0.0000000000000 0.0075000000000 0.00000000000 Toncila
0.0000000000000E+000 0.0000000000E+000 0.0000000000	87 0.000000000000 0.00750000000000 0.0000000000000 Tensile 83 0.0000000000000 0.000000000000 0.0000000000000 Tensile
	55 -0.0000000000000 0.00000000 0.000000000
3.712501886513109E-020 -2.818925648462311E-018 0.000000000000000E+000	60 -0.000000000000 0.00500000000 0.000000000
-2.818925648462311E-018 1.0000000000001E-002 0.000000000000000E+000	61 0.00000000000000 0.010000000000 0.00000000
0.000000000000E+000 0.00000000000E+000 0.00000000E+000	62 -0.0000000000000 0.00000000000 0.00000000000 63 -0.000000000000 0.0025000000000 0.00000000000
1.842791267224808E-035 5.312590645178968E-018 0.00000000000000E+000	c4 -0.00000000000000 0.002500000000 0.0000000000
1.012/9120/224002-035 5.122500451/0502-012 0.0000000000000000000000000000000000	e5 0.0000000000000 0.0075000000000 0.0000000000
0.0000000000000000000000000000000000000	66 0.000000000000 <u>0.010000000000</u> 0.000000000
	67 TENSORS Stress float
-1.849155480214625E-019 -1.517883041479705E-018 0.00000000000000E+000	68 -2.550722254282702E-019 2.602085213965214E-018 0.0000000000000E+000 2.602085213965214E-018 1.0000000000000000000000000000000000
-1.517883041479705E-018 9.99999999999995E-003 0.00000000000000E+000	70 0.0000000000000000000000000000000000
0.000000000000E+000 0.000000000000E+000 0.00000000E+000	71
	72 -9.219935359004053E-019 -9.757819552369542E-019 0.0000000000000000000000000000000000
	19 _6 TETRIGEESSEEE29F_016 1 000000000000000000000000000000000

blem

What has been done

Number Of Elements	Element Type	Gauss Points	New Version's Elasticity Problem	New Version's Brittle Fracture Problem	Problems
1	Quad 4	4	\checkmark	\checkmark	
1	Quad 8	4	\checkmark	\checkmark	,
4	Quad 4	4	\checkmark	\checkmark	/
4	Quad 8	4	\checkmark	\checkmark	

Tensile Problem

Number Of Elements	Element Type	Gauss Points	New Version's Elasticity Problem	New Version's Brittle Fracture Problem	Problems
1	Quad 4	4	\checkmark	\checkmark	can not compared with analytical solutions and the result of Quad4
1	Quad 8	4	\checkmark	\checkmark	
4	Quad 4	4	\checkmark	\checkmark	
4	Quad 8	4	\checkmark	\checkmark	

Shear Problem

Thanks for the attention

Università degli Studi di Padova