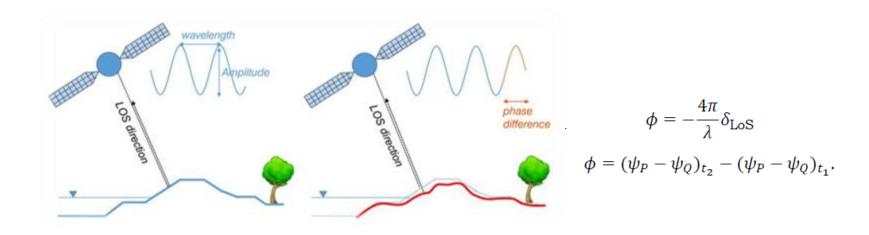


Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

E.Lama Moualla - 36th Cycle

Supervisors: Dr. Alessio Rucci & Prof.Giampiero Naletto


Meeting - 06/09/2021

InSAR (Interferometric Synthetic Aperture Radar) is an efficient tool to monitor surface motions of millimeters depending on the phase difference concept

The phase differences are the changes in range along the Line of Sight of a satellite (LoS)

G.COLOMBO

Sentinel-1 is a multi-pass system with both a high spatial and temporal resolution

Thus Sentinel-1 can detect and monitor the displacements of the earth's surface related to landslides which can be relatively small in space and variable in time

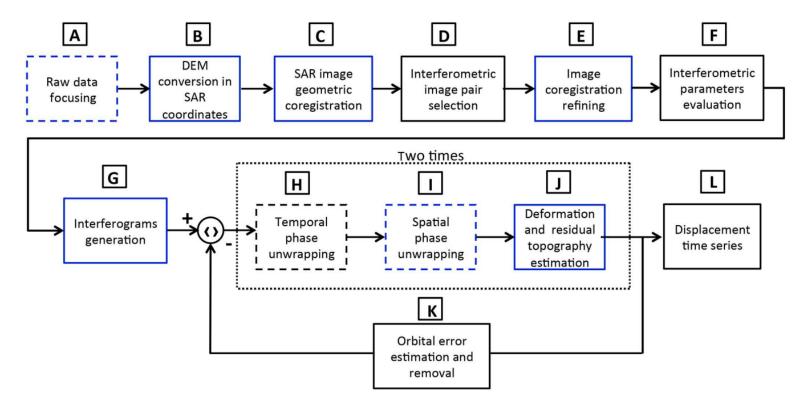
Using Intelligent algorithms in developing a methodology that can automatically analyze large InSar data packets and identify areas where infrastructure are at risk of displacement due to ground movement

Such a benefit we can get by transcending the following obstacles

- The high amount InSAR data and expert knowledge to get the results
- Using complex software environments as future time series analysis will become longer
- ⁽⁰⁾ Considering the geological conditions of the studied area
- Defining the appropriate DInSAR approach and a stable reference point for the selected workflow
- Estimating the atmospheric contribution

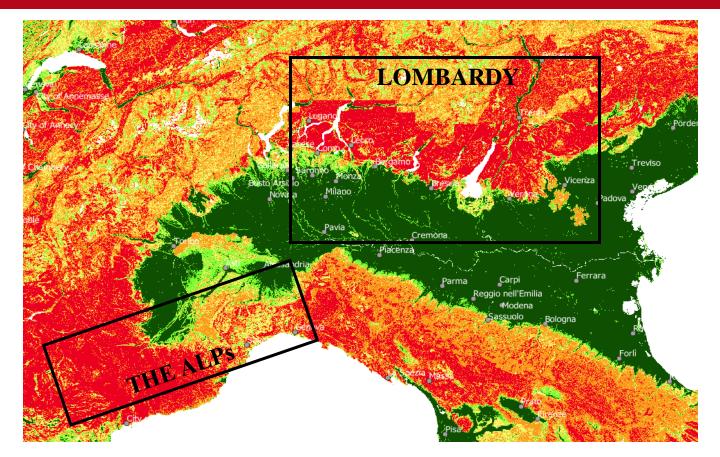
The theoretical and empirical aspects should be considered for each case study to decide which DInSAR approach to use and avoid certain limitations

Theoretically, the SBAS approach provides a higher density of measurement points than the PS approach


P-SBAS processing chain runs many steps in parallel by exploiting different bursts as inputs

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

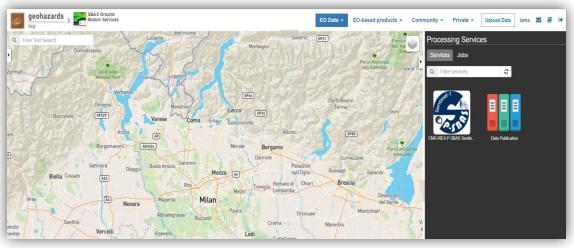
P-SBAS TECHNIQUE



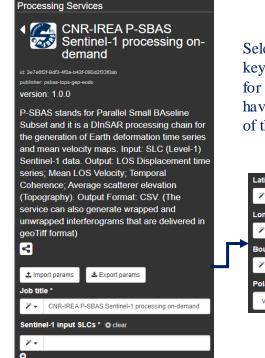
P-SBAS workflow: Black and blue blocks represent sequential and parallel (from a process-level perspective) processing steps, respectively Dashed line blocks represent multithreading programmed processing steps

1. The entire interferograms and time series processing chains have been processed automatically using PSBAS technique provided by the GEP platform

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

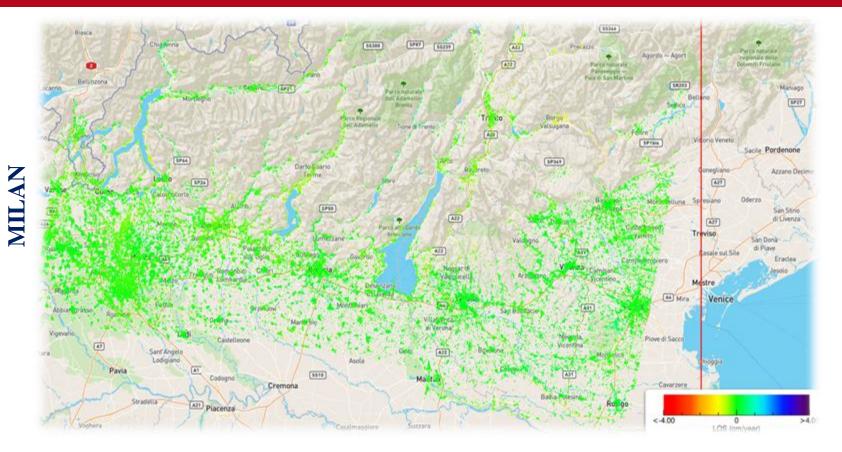


1.The Methodology (Geohazards TEP)

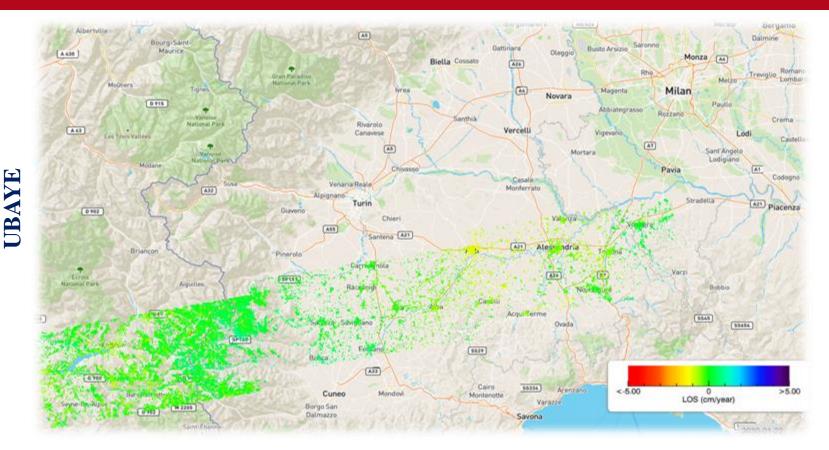

G-TEP is a cloud computing environment that provides an extensive collection of computing resources and storage that can be effectively exploited through the P-SBAS processing chain to carry out interferometric analyses at a vast scale in reduced time frames

1.The Methodology (Geohazards TEP)

Selecting suitable SAR images is a key step since the criteria adopted for the selection of these images have a strong impact on the quality of the results


Latitud	le of the Control Point *
* -	
Longit	ude of the Control Point *
* -	
Bound	ing Box
* -	
Polariz	ation *
vv	Ý

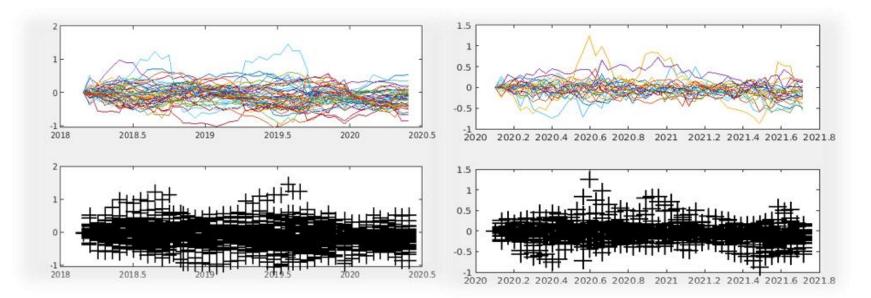
1.Results of Time-Series Analysis



Lama Moualla

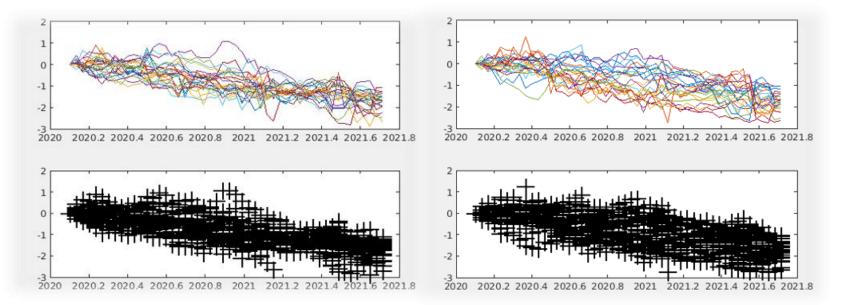
1.Results of Time-Series Analysis

Lama Moualla



2. The Labelling Procedure was the most important and critical idea

2.The Methodology (Labelling)



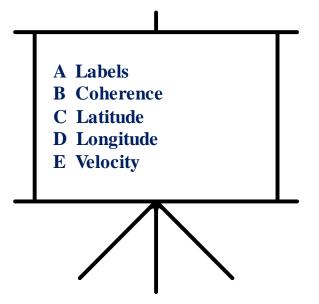
Stability Class Depending on The Displacement Time-Series (from 0 to - 0.3 cm/year)

2.The Methodology (Labelling)

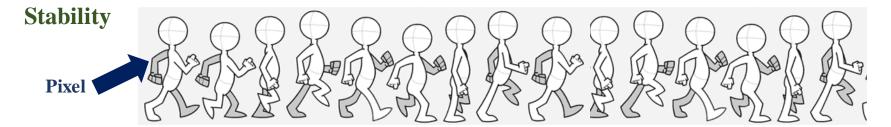
Movement Class Depending on The Displacement Time-Series (less than - 0.3 cm/year)

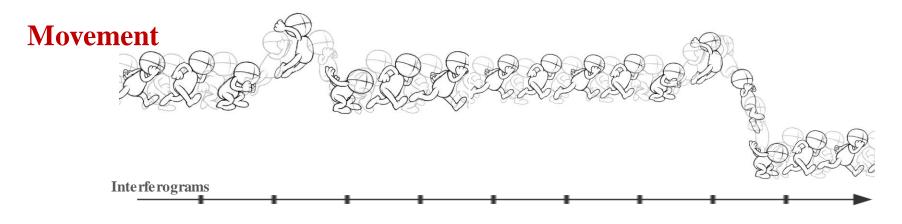
2.Results of Time-Series Analysis

Date of production: 2021-08-2	0T01:40:24Z																		
Service used for generation:																			
Geographic_CS_type_code: EPS																			
Used DEM: SRTM 1arcsec	-																		
Super master SAR image ID:	S1A IW SLC	1SDV 2020	1009T052719	20201009T	52746 0347	15 040B45	7656.SAFE												
Spatial resolution: 90	90			-	_														
Sensor: S1																			
Mode: IW																			
Antenna_side: Right																			
Relative_orbit_number: 168																			
Orbit_direction: DESCENDING																			
Wavelenght: 0.055465760																			
Value_unit: N/A	deg	deg	m	cm/yr	N/A	N/A	N/A	N/A	cm										
Number_of_looks_azimuth: 5																			
Number_of_looks_range: 20																			
Applied_filter: Goldstein_0.50																			
Number_of_dates: 50																			
Reference_date: 2020-01-07T05	5:27:10Z																		
Reference_point: 8.5550873 45	.526160																		
Applied_corrections: No_Corre	ctions																		
Time_Years: 2020.0198	2020.0527	2020.0856	2020.1168	2020.1497	2020.1865	2020.2193	2020.2522	2020.2835	2020.3164	2020.3504	2020.3833	2020.4161	2020.4474	2020.4803	2020.5143	2020.5472	2020.5801	2020.6114	2020.64
List_of_dates: 2020-01-07T05:22	7 2020-01-191	2020-01-31	2020-02-12	2020-02-24	2020-03-07	2020-03-19	2020-03-31	2020-04-12	2020-04-24	2020-05-06	2020-05-18	2020-05-30	2020-06-11	2020-06-231	2020-07-051	2020-07-17	2020-07-291	2020-08-10	2020-08-
Palette: 3																			
####		-	1																
ID	Lat	Lon	Торо	Vel	Coer	cosN	cosE	cosU	TS										
0	46.15375	12.16042	581.59	0.1866	0.8810547	-0.0964655	0.5010124	0.8600471	0	-0.1461	0.0885	0.0731	-0.0214	0.0709	0.152	0.0721	0.0213	0.0219	0.10
1	46.15375	12.16042	579.39	-0.1293	0.90523	-0.0964646	0.5010077	0.8600499	0	-0.2319	0.027	0.1618	0.0753	0.3563	0.1268	0.226	0.074	0.2441	0.32
2	46.15292	12.16042	576.72	-0.3944	0.8591992	-0.0964635	0.5010019	0.8600534	0	-0.2095	0.0211	0.0834	0.0421	0.0297	-0.0312	-0.1419	-0.0876	-0.2021	0.06
3	46.15208	12.15958	575.1	0.2771	0.8610231	-0.0964628	0.5009984	0.8600555	0	-0.0547	0.0156	0.1143	-0.0828	0.0473	0.1846	0.2394	0.2619	0.1096	0.23
4	46.15125	12.15958	575.74	-0.2266	0.9325786	-0.0964628	0.5010003	0.8600544	0	-0.1252	0.0099	0.0879	-0.0658	0.0161	0.0036	0.0176	0.1336	0.1056	0.24
5	46.12458	12.15292	524.63	-0.3035	0.9417927	-0.0964378	0.5008977	0.860117	0	-0.0249	0.0169	-0.0031	0.202	0.141	0.1697	0.172	0.1402	0.0175	0.32
6	46.12375	12.15292	526.3	-0.0181	0.8916284	-0.0964381	0.5009019	0.8601145	0	0.0385	-0.034	0.0821	0.2626	0.1612	0.1675	0.1278	0.1669	0.0431	0.12
7	46.12292	12.15292	525.65	-0.0676	0.8902928	-0.0964377	0.5009007	0.8601152	0	0.0356	-0.0468	0.0941	0.3324	0.1857	0.1346	0.0539	0.1586	0.0006	0.13
8	46.11375	12.15208	433.52	-0.0578	0.8708078	-0.0964058	0.5006932	0.8602397	0	0.011	0.1622	0.2161	0.1408	0.1773	0.2412	0.2294	0.0108	0.1168	0.35
9	46.11292	12.15208	431.32	-0.1138	0.8870394	-0.0964049	0.5006884	0.8602425	0	0.0019	0.1739	0.1587	-0.0423	-0.0427	0.0995	0.1526	-0.1155	-0.0769	0.1
10	46.11208	12.15208	433.76	0.0208	0.8924841	-0.0964054	0.5006945	0.860239	0	-0.0617	0.1672	0.1145	-0.045	-0.0606	0.0672	-0.0333	-0.0676	-0.0678	0.18
11	46,11200	12,15125	431.78	0.0661	0.0004606	-0.0964046	0.5006902	0.8602415	0	-0.1287	0.2314	-0.0101	-0.0023	0.0036	0.1171	0.0639	-0.2372	-0.2374	-0.05


Lama Moualla

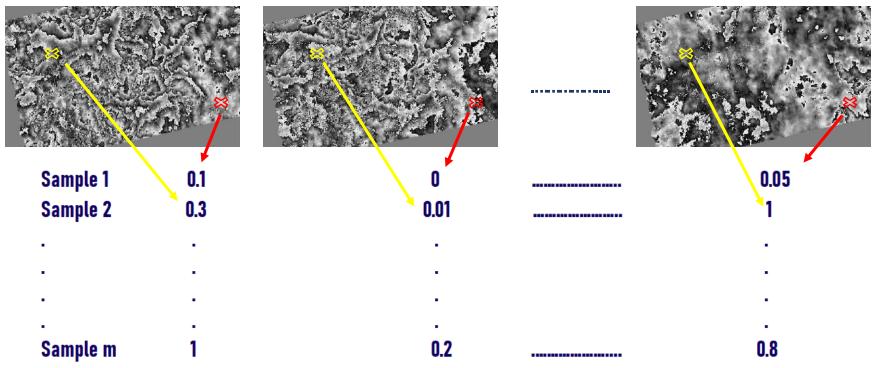
2.Results of Labelling Methodology


-	A	8	C	D	E
3	Movement	0.970812	44.96375	11.73958	-0.6357
1	Movement	0.9958739	44.96458	11.68292	-0.6883
	Movement	0.8564658	44.96625	11.73458	-0.3221
5	Stability	0.9749139	44.96708	11.71625	-0.2681
7	Movement	0.8740339	44.96792	11.72208	-0.5
3	Stability	0.990781	44.96875	11.64958	-0.2316
9	Movement	0.8945372	44.96958	11.74375	-0,4497
0	Movement	0.8731802	44.97042	11.71208	-0.4696
L	Stability	0.9751111	44.97125	11.72042	-0.2661
2	Stability	0.9689941	44.97208	11.70958	-0.1668
	Stability	0.9689941	44.97208	11.70958	-0.2207
4	Movement	0.9163603	44.97292	11.61542	-0.9545
5	Movement	0.929069	44.97375	11.63292	-0.6563
5	Movement	0.9931934	44.97458	11.63458	-0.3216
7	Movement	0.9319142	44.97542	11.62625	-0.6074
3.	Movement	0.9072196	44.97625	11.62792	-0.5049
9	Movement	0.9492776	44.97708	11.59042	-0.3199
0	Movement	0.8707342	44.97792	11.58958	-0.4959
1	Movement	0.9062911	44.97875	11.57208	-0.3038
2	Movement	0.9043427	44.97958	11.62958	-0.7534
3	Movement	0.9565856	44.98042	11.62208	-0.3044
4	Movement	0.8933095	44.98125	11.68042	-0.8979
5	Stability	0.8751608	44.98208	11.61458	-0.2904
5.	Movement	0.9493834	44.98292	11.64542	-0.417
7	Movement	0.9405783	44.98375	11.59875	-0.3643
8	Stability	0.9994925	44.98458	11.60958	-0.1821
9	Stability	0.9994925	44.98458	11.60958	-0.1823
0	Movement	0.8841575	44.98542	11.62708	-0.4861
1	Stability	0.9958365	44.98708	11.50958	-0.1631
2	Stability	0.936958	44.98792	11.50458	-0.0023
3	Stability	0.9957873	44.99042	11.50958	-0.2359



Explanation

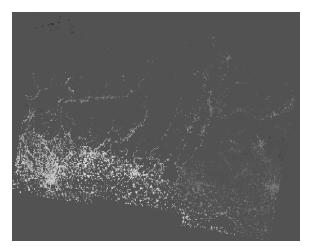
Simplified Explanation:

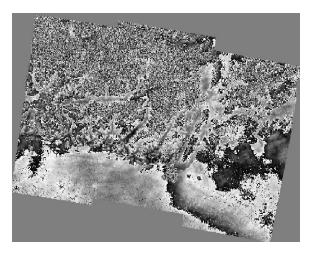


Provided that the selected pixels meet the coherence threshold 0.6

2.Results of Labelling Methodology

at	Lon	Name N	/el				7378152722	737827LHAH	737827Q6GC	7378394KGK	737845A771	737845AIXV	737845N4J5	737851MQ15	737851U5JG	737851UV00	737857Q7SA 73787
45.0246	11.639	Movemen	-0.8173	INP	TTT		0	0	1	0.43115	1	0.43395	0		0 1	0	0
45.3421	10.874	Stability	-0.0477		UI	3	0	0.42113	1	1	1	0.12104	0		0 0.43027	0	0
45.3646	11.002	Stability	-0.0126				0	0	1	0.68332	1	0	0		0 0.26682	0	0.13897
46.0571	11.237	Stability	-0.166	1	0.38005	1	0	0.98912	1	0	0.92665	0	0		0 0	0	0.14262
45.6996	11.435	Stability	-0.1523	0	0	0.71696	0	0	1	0.0015496	1	0	0		0 0.16037	0	0.7705
46.0012	11.341	Stability	-0.2209	0.15903	0.33128	1	0	0.52753	0.94481	0.049974	1	0	0		0 0	0	0
45.0729	11.753	Movemen	-0.5278	0	0	0.74383	0	0	1	1	1	1	0		0 1	0	0
45.5321	11.582	Movemen	-0.9585	0	0	0.32964	0.18592	0	0.96405	0.84097	1	0.84464	0		0 0.39873	0	0.74888
46.1737	11.220	Movemen	-0.5086	1	0.78335	1	0	1	0.70659	0	0.83682	0	0		0 1	0.074384	0.46576
45.5063	10.942	Stability	-0.0387	0	0	1	0	0.50673	1	0.12842	1	0	0		0 0	0	0.9328
46.4079	11.137	Movemen	-0.6435	0.26455	0.17046	1	0	0.6692	0.81384	0	0.80164	0	0		0 1	1	1
45.4504	10.932	Stability	-0.214	0	0	0.94224	0	0.72864	1	0.88553	1	0	0		0 0	0	0.71877
45.7563	11.003	Stability	-0.2478	0.26838	0	1	0	0.057572	1	0	1	0	0		0 0	0	0.2256
46.4937	11.358	Stability	-0.1431	0.69729	0.24607	1	0	1	0.78695	0	1	0.43667	0		0 1	1	1
46.0112	11.310	Stability	-0.0208	0.27541	0.15375	1	0	0.63427	1	0.11547	1	0	0		0 0	0	0
46.3862	11.252	Stability	-0.0213	1	0.55442	1	0	0.85284	0.56808	0	0.30961	0	0		0 1	1	1
45.7046	11.677	Movemen	-0.455	0	0	1	0.26181	0	1	0	1	0.54494	0		0 0.32444	0	1
46.0154	11.264	Movemen	-0.3075	1	0.27979	1	0	0.66768	1	0	1	0	0		0 0	0	0
45.3421	10.939		-0.0543	0	0	1	0	0	1	1	1	0	0		0 0.37345	0	0
45.0812	11.489	\mathbf{v}	-0.4452	0	0	1	0	0	1	0.34386	1	0.47467	0		0 1	0	0.019397
46.3446	11.337		-0.0532	0.69216	1	0.72429	0	0.85804	0	0	0.1743	0	0.087646		0 1	1	1
45.8829	11.032		-0.3818	0.97183	0.42659	1	0	0.064319	1	0	0.2546	0	0		0 0.1593	0	0.0033954
45.5321	11.062		-0.0758	0	0	0.95749	0.098701	0	1	0.63881	1	0	0		0 0	0	0
45.7313	11.494		-0.1217	0	0	0.29799	0	0.17136	1	0.39595	1	0	0		0 0.21864	0	0.87264
46.3362	11.238		-0.404	0.9158	0.49213	0.6854	0	0.64346	0.19445	0	0.045097	0	0		0 1	1	1
46.0429	11.231		-0.629	1	0.30181	1	0	0.41053	1	0	0.64735	0	0		0 0	0	0.069003
46.0746	11.227		-0.3995	1	1	1	0	0.85366	0.99174	0	0.2935	0	0		0 0	0.0037171	0.54331
46.0679	11.218		-0.1984	1	1	1	0	0.6976	0.77991	0	0.082691	0	0		0 0	0	0.55958
46.0404	11.110		-0.1274	1	0.32236	1	0	0.74731	1	0	0.5269	0	0		0 1	0.34603	0.46573
45.1446	11.007	\bigcirc	-0.3023	0	0	1	0	0.0002903	1	0.75625	1	0.28671	0		0 1	0	0
45.9029	12.009		-0.3694	0	0	0.88481	0.53677	0	1	0	1	0.83682	0		0 0.33892	0	1


The Labelled Dataset


Lama Moualla

The main step influencing the precision of the displacement time series is phase unwrapping and phase contribution estimation

Unwrapped Interferogram

Wrapped Interferogram

Lama Moualla

MILAN DATASETS

First Dataset

156442 training example extracted from the Unwrapped Interferograms Second Dataset

226967 training example extracted from the Wrapped Interferograms

UBAYE DATASETS

First Dataset

24243 training example extracted from the Unwrapped Interferograms Second Dataset

46440 training example extracted from the Wrapped Interferograms

First Phase (One Interferogram)

A. Cut the interferogram into pixels and keep only the pixels that meet a predefined coherence threshold of 0.6

B. Check every pixel in the interferogram if it has more than one measurement point (MP) and select only the MP of the highest coherence

C. Assign a label for each pixel depending on the related velocity value of the MP:

Velocity < -0.3 cm/year _____Stability Velocity >= -0.3 cm/year _____Movement

D. Produce an excel table contains the **latitude, longitude, velocity and label of** each selected MP of each pixel

Second Phase (The whole series of the sequenced interferograms)

- A. Cut every pixel contains a MP from the whole sequenced series of the produced interferograms (depending on the latitude and longitude of the MP)
- B. Normalize the pixel values $(-\pi \text{ to } +\pi)$ to get a new range from 0 to 1
- C. Remove zeros and duplicated tapes
- D. Label the produced tape of pixels
- E. Balance the labels between the two classes (Stability and Movement)
- F. Produce the final dataset csv that contains latitudes, longitudes, velocities, labels and normalized pixel values for each MP

3. Implementing ANN models to train the datasets

Lama Moualla Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

3.The Methodology (Training)

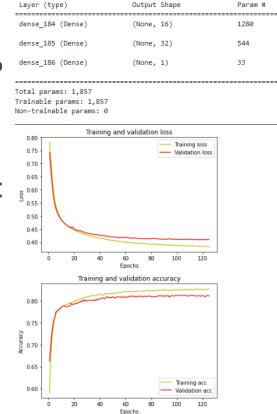
Artificial Neural Network Model (ANN)

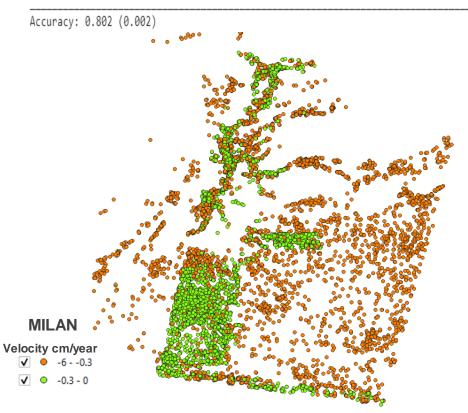
HYPERPARAMETERS

Learning rate	0.001	L2 Regularization	0.003 -0.005
Number of Dense Layers	3	Epochs	125 - 200
Batch size	1024	Loss Function	Binary Cross Entropy
Metrics	Accuracy	Optimizer	Adam

Visualizing And Validating The Results

28


A	B	C	D	E	F	0
	Lat	Lon	Vel	te_yNew	te_y	
0	44.9637	11.7613	-0.4711	0.257573	0	
1	46.1079	11.1037	-0.2121	0.663635	1	
2	46.5262	11.2504	-0.1643	0.15222	1	
3	45.7788	11.0154	-0.3061	0.316986	0	
4	45.9988	11.2629	-1.0391	0.541626	0	
5	46.0746	11.1412	-0.3159	0.774867	0	
6	45.4521	10.9637	-0.0035	0.935744	1	
7	45.0388	11.2221	-0.2463	0.645194	1	
8	45.0454	11.1421	-0.3467	0.34322	0	
9	45.4046	10,9571	-0.0189	0.881704	1	
10	45.5154	10.9121	-0.1416	0.916502	1	
11	45.6829	11.9162	-1.1502	6.80E-08	0	
12	45.7196	11.3129	-0.1579	0.980569	1	
13	46.1587	11.1396	-0.4257	0.029266	0	
14	45.4396	11.0288	-0.0335	0.923004	1	
15	45.4546	10.9004	-0.158	0.90368	1	
16	45.2537	11.1762	-0.4002	0.860114	0	
17	45.5829	11.0454	-0.232	0.021053	1	
18	45.1229	10.9046	-0.1371	0.869931	1	
19	45.1013	11.6613	-0.3472	0.044764	0	
20	46.0671	11.2104	-0.2022	0.673283	1	
21	46.0412	11.1154	-0.0706	0.745586	1	
22	46.2163	11.0979	-0.2636	0.88941	1	
23	46.0504	11.4654	-0.9878	0.003665	0	
24	45 0371	11 3406	0 1663	0.603400	1	

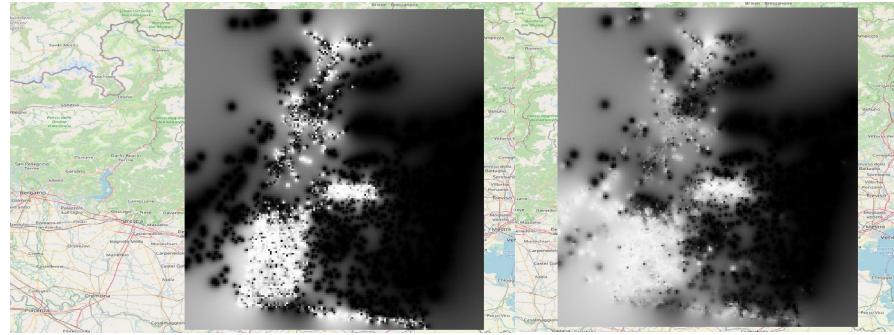

Param #

1280

544

33

Cross validation (5 folds) for 30000 Training Examples



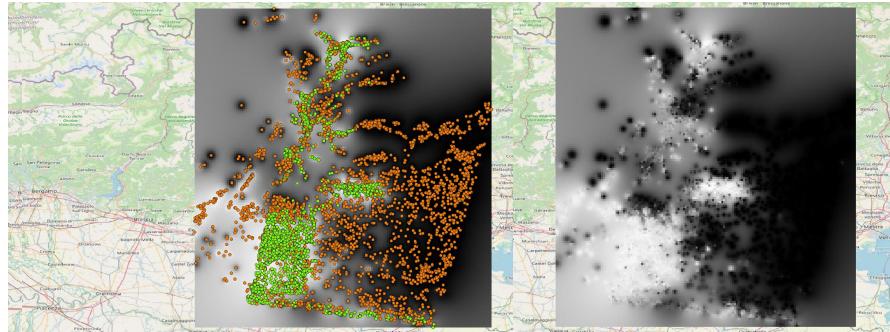
Results of the Unwrapped Interferograms

Accuracy: 0.802 (0.002)

Ground Truth

Prediction

Lama Moualla

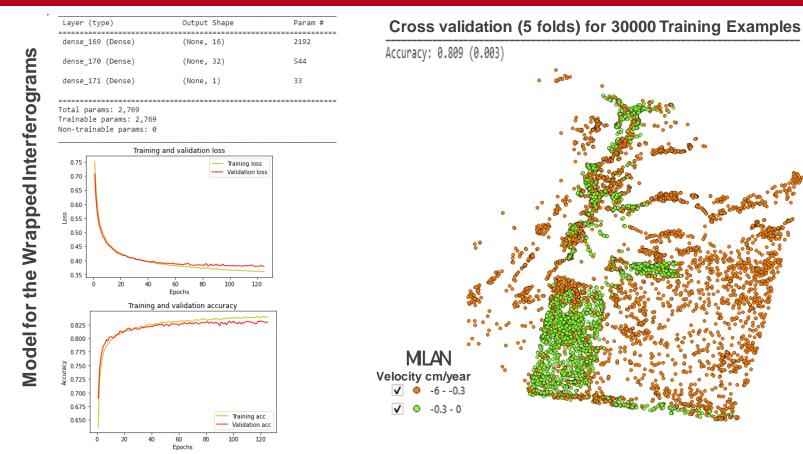


Results of the Unwrapped Interferograms

Accuracy: 0.802 (0.002)

Ground Truth

Prediction



Lama Moualla

Prevention of Potential Catastrophes Depending on Interferometric Radar Technique and Artificial Intelligence

Results of the Wrapped Interferograms

Accuracy: 0.809 (0.003)

Ground Truth

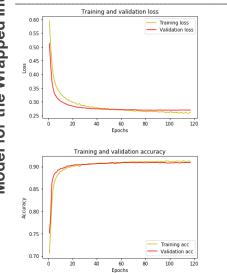
Prediction

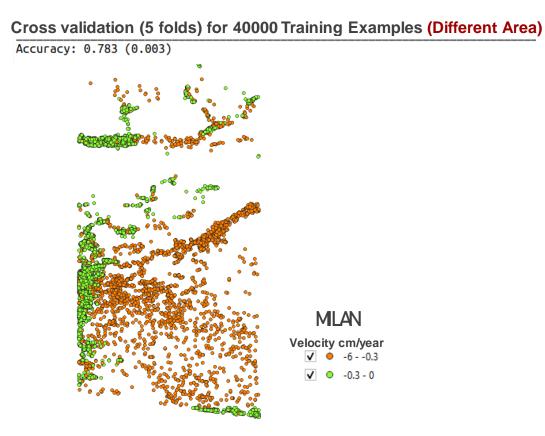
Results of the Wrapped Interferograms

Accuracy: 0.809 (0.003)

Ground Truth

Prediction

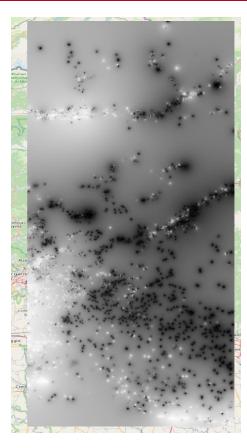


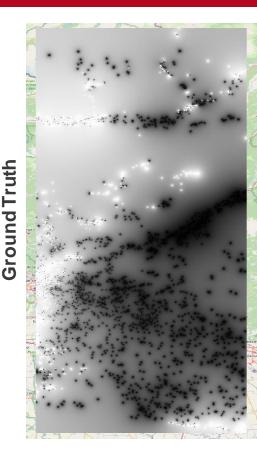

Model: "sequential_25"

	Layer (type)	Output	Shape	Param #
	dense_75 (Dense)	(None,	25)	2000
	dropout_40 (Dropout)	(None,	25)	0
	dense_76 (Dense)	(None,	50)	1300
	dropout_41 (Dropout)	(None,	50)	0
0	dense_77 (Dense)	(None,	1)	51

Trainable params: 3,351

Non-trainable params: 0



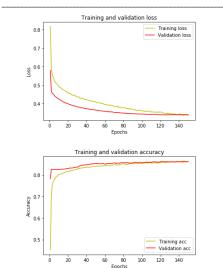


Results of the Wrapped Interferograms

Accuracy: 0.783 (0.003)

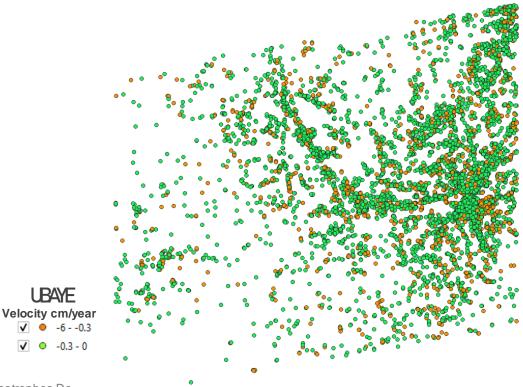
Lama Moualla

3.Results of Ubaye Dataset



Model: "sequential_71"

Layer (type)	Output Shape	Param #
dense_213 (Dense)	(None, 25)	2150
dropout_121 (Dropout)	(None, 25)	Θ
dense_214 (Dense)	(None, 10)	260
dropout_122 (Dropout)	(None, 10)	Θ
dense_215 (Dense)	(None, 1)	11

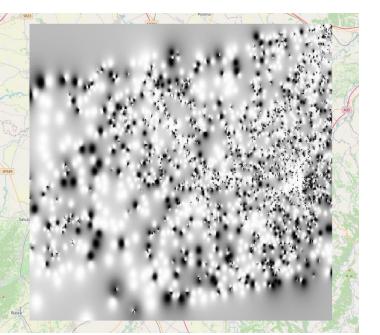

Total params: 2,421 Total params: 2,421 Trainable params: 2,421

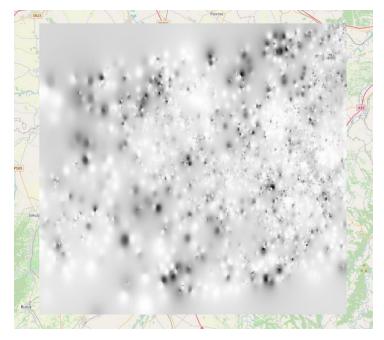
Non-trainable params: 0

Cross validation (5 folds) for 22000 Training Examples (Different Area)

Accuracy: 0.743 (0.001)

- -


3.Results of Ubaye Dataset


Results of the Wrapped Interferograms

Accuracy: 0.743 (0.001)

Ground Truth

Prediction

Lama Moualla

Using Intelligent algorithms in developing a methodology that can automatically analyze large InSar data packets and identify areas where infrastructure are at risk of displacement due to ground movement

Implementing LSTM Algorithm to develop a predictive model for the timeseries of displacements (the number of predicted time steps should be defined)

Developing the ArcGIS Toolbox

Thanks for the attention

Università degli Studi di Padova